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Abstract
The influx of massive amounts of new data from
current and upcoming cosmological surveys ne-
cessitates compression schemes that can effi-
ciently summarize the data with minimal loss of
information. We investigate the potential of self-
supervised machine learning to construct optimal
summaries of cosmological datasets. Using a par-
ticular self-supervised machine learning method,
VICReg (Variance-Invariance-Covariance Regu-
larization) deployed on lognormal random fields
as well as hydrodynamical cosmological simula-
tions, we find that self-supervised learning can
deliver highly informative summaries which can
be used for downstream tasks, including provid-
ing precise and accurate constraints when used
for parameter inference. Our results indicate that
self-supervised machine learning techniques offer
a promising new approach for cosmological data
compression and analysis.

1. Introduction
Current and upcoming cosmological surveys such as DESI
(Aghamousa et al., 2016), Euclid (Laureijs et al., 2011), the
Vera C. Rubin Observatory (LSST) (Collaboration et al.,
2012), and the Square Kilometer Array (SKA) (Weltman
et al., 2020) will deliver massive amounts of data of various
modalities; making full use of these complex datasets to
probe cosmology is a challenging task. The raw datasets
are typically first described in terms of a set of informative
lower-dimensional data vectors or summary statistics, which
are then used for parameter inference. These summary
statistics are often motivated by inductive biases drawn
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from the physics of the problem at hand. Some widely
used summary statistics include power spectra and higher
n-point correlation functions, wavelet scattering transform
coefficients, probability distribution functions, and many
others.

While these statistics have been successful in placing tight
constraints on the values of cosmological parameters, the
sufficiency of manually-derived statistics (i.e., ability to
compress all physically-relevant information) is the excep-
tion rather than the norm. Furthermore, in order to take ad-
vantage of recent advances in the field of simulation-based
inference (SBI), the size of the summary statistic presents
an important consideration due to the curse of dimensional-
ity associated with the comparison of the simulated data to
observations in high-dimensional space (Alsing & Wandelt,
2019).

A number of methods have been proposed to construct op-
timal statistics which are compact yet contain all of the
relevant cosmological information. Some have focused on
creating compression schemes which preserve the Fisher
information content of the original dataset (Heavens et al.,
2000; Zablocki & Dodelson, 2016; Alsing & Wandelt, 2018;
Alsing & Wandelt, 2019; Charnock et al., 2018). Another
line of research looked at compression schemes which op-
timize the mutual information between the summaries and
the parameters of interest (Chen et al., 2020; Jeffrey et al.,
2021).

In this work, we explore self-supervised machine learning
as an alternative approach to obtaining compressed sum-
mary statistics. Instead of constructingsummaries by follow-
ing a given prescription, self-supervised learning methods
explore the data on their own and reduce dimensionality
of the data based on its underlying structure and symme-
tries. Self-supervised learning has recently been applied
to analyze astronomical images (Hayat et al., 2021) and
particle collision events (Dillon et al., 2022; Dillon et al.,
2022). We investigate the potential of the self-supervised
machine learning techniques for compressing cosmological
datasets into informative low-dimensional summaries. We
compare the performance of this method to an equivalent su-
pervised baseline model and, where applicable, theoretical
constraints.
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2. Methodology

Cosmological
parameters
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Figure 1. A schematic overview of the self-supervised learning
pipeline implemented in this work. The T, T ′ are different trans-
formations used to produce two views (e.g., lognormal density
maps) X,X ′ of the same underlying cosmological parameters of
interest (e.g., ΩM and σ8). The inference network is trained on
the summaries S, S′ obtained from the pre-training step.

In this work, we focus on a particular self-supervised
method, VICReg (Variance-Invariance-Covariance Regu-
larization) (Bardes et al., 2021). VICReg is designed to
explicitly avoid a key challenge for self-supervised learning
methods – the so-called collapse problem in which the neu-
ral network learns a trivial solution and produces the same
constant summaries for different input vectors. VICReg
addressed this problem through an easily interpretable triple
objective function that maximizes the similarity of the sum-
maries corresponding to the same image, while minimizing
the redundancy between different features of the summary
vectors and maintaining variance between summaries within
a training batch.

Similarly to other self-supervised methods, VICReg can
be divided into a pre-training step and a downstream task.
During the pre-training step, the encoder network is first
provided with two different views X and X ′ of an input I .
In the image domain, so-called views are random transfor-
mations of the image I obtained by, for instance, cropping
it at different locations, applying color jitters or blurring
the image. In the context of cosmological data, different
views might represent different realizations of an observ-
able that corresponds to the same fundamental cosmological
parameters, but, for instance, different initial conditions or
evolution histories.

The encoder uses views X and X ′ to produce correspond-
ing low-dimensional summaries S and S′. The summaries
are then used as an input to a small expander network that
maps them onto vectors Z and Z ′, called embeddings. Em-
pirically, Bardes et al. (2021) and Zbontar et al. (2021)
found that computing the VICReg loss on embeddings Z,Z ′

(which usually have more dimensions than summaries S, S′)
results in more informative summaries than computing the
loss on directly on the summaries. The VICReg loss is com-

puted on the level of embeddings, but the expander network
is discarded after the pre-training step, and the summaries
are used for the downstream tasks in the subsequent steps of
the method. We show a schematic overview of the method
in Fig. 1.

The three parts of the VICReg objective function are the
invariance loss s, the variance loss v, and the covariance loss
c. The invariance loss s measures the similarity between
the outputs of the encoder by computing the mean-squared
Euclidean distance between each pair of embeddings Z, Z ′.
For a batch of n pairs of views, the invariance loss is defined
as: s(Z,Z ′) = 1

n

∑
i ∥Zi − Z ′

i∥
2
2.

The variance loss v is intended to prevent the norm col-
lapse which occurs when the encoder maps every input
to the same output. It measures the overall variance
in a given batch across different dimensions in the em-
bedding space and encourages the variance along each
dimension j to be close to some constant γ: v(Z) =
1
d

∑d
j=1 max

(
0, γ −

√
Var(Zj) + ϵ

)
. Here Zj is a vector

that consists of the values of the embeddings Zi at dimen-
sion j, d is the dimensionality of embeddings Z, and γ and
ϵ are fixed to 1 and 0.0001 respectively.

The covariance loss c(Z) is used to address the informa-
tional collapse whereby different dimensions of the sum-
maries encode the same information and are therefore
redundant. It drives the covariance matrix C(Z) to be
close to a diagonal matrix by minimizing the sum of the
squares of the off-diagonal entries of the covariance matrix:
c(Z) = 1

d

∑
i ̸=j [C(Z)]2i,j .

The final loss function is a weighted sum of three loss terms:

ℓ(Z,Z ′) = λs(Z,Z ′) + µ[v(Z) + v(Z ′)]

+ ν[c(Z) + c(Z ′)],
(1)

where λ, µ, ν are hyperparameters controlling the weights
assigned to each term in the loss function.

Once the pre-training step is complete, the summaries are
used directly for downstream tasks by training a simple
neural network, such as a multi-layer perceptron with a
few layers. We use the summaries to infer cosmological
parameters of interest and refer to the neural network used
in this step as inference network. Assuming a Gaussian
likelihood, we use the inference network to predict their
means θn and covariances Σn by minimizing the negative
log-likelihood function:

L =
1

N

N∑
n=1

[
1

2
ln |Σn|+

1

2
(θn − µn)

T
Σ−1

n (θn − µn)

]
,

(2)
where µn are the true values of the parameters.
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3. Experiments
3.1. Lognormal Overdensity Maps

We first test our methodology on mock cosmological data:
lognormal random fields, which are commonly used as an
approximation to matter density fields (Percival et al., 2004;
Beutler et al., 2011; Cole et al., 2005).

Data and VICReg Set-up: We generate lognormal fields
δLN (x) from 2D Gaussian overdensity fields δG(x) with
a specified power spectrum PG(k). We then convert the
Gaussian fields to obtain corresponding lognormal overden-
sity fields: δLN (x) = exp

(
δG(x)− 1

2σ
2
G

)
− 1, where σ2

G

is the variance of the field δG(x). The Gaussian fields are
produced with the powerbox package (Murray, 2018).

We take PG(k) to be linear matter power spectrum com-
puted with the Eisenstein-Hu transfer function (Eisenstein
& Hu, 1999) and generate the power spectra using the
pyccl package (Chisari et al., 2019). For each PG(k),
we vary two cosmological parameters: total matter den-
sity, ΩM , and the r.m.s. of the present day (z = 0) density
perturbations at scales of 8 h−1 Mpc, σ8. We fix the re-
maining cosmological parameters to the following values:
Ωb = 0.05, h = 0.7, ns = 0.96, Neff = 3.046,

∑
mν = 0

eV. We use a grid of N2 = 100 × 100 points and set the
volume of the box to be V = L2 = (1000Mpc)2.

We generate a set of 10,000 different combinations of cosmo-
logical parameters ΩM ∈ [0.15, 0.45] and σ8 ∈ [0.65, 0.95].
For each combination of ΩM and σ8, we simulate 10 dif-
ferent realizations of lognormal overdensity fields. These
realizations, rotated and flipped at random, are used as dif-
ferent views to train the VICReg encoder network. We use
80% of the data for training, 10% for validation, and the
remaining 10% for testing.

We compress the 100 × 100 maps down to summaries of
length 16 using an encoder network with 9 convolutional
layers and 2 fully-connected layers. The inference network
used to infer parameters from the compressed summaries is
a simple fully-connected neural network with 2 layers.

We train the encoder network for 200 epochs in
the PyTorch (Paszke et al., 2019a) framework using
AdamW (Kingma & Ba, 2014; Loshchilov & Hutter, 2019)
optimizer with initial learning rate of 2× 10−4 and cosine
annealing. We set the λ, µ, and ν weights in the loss func-
tion to 5, 5, and 1 respectively.

We use the same training, validation, and test split when
training the downstream inference network. The network is
trained for 200 epochs with AdamW, with the initial learning
rate 10−3, reduced by a factor of 5 when the validation loss
plateaus for 10 epochs. We evaluate the performance of
both the encoder and inference networks on the validation
set at the end of each epoch and save the model which yields

the lowest validation loss.

Results: With both the encoder and the inference networks
trained, we evaluate the performance of the VICReg method
on the test dataset. We find the inference network trained
on the VICReg summaries is able to recover the true values
of cosmological parameters with both accuracy and preci-
sion, with relative errors on ΩM and σ8 equal to 5.2% and
1.3%, respectively. For comparison, a neural network with
an equivalent architecture, trained on the maps directly in a
fully-supervised manner, predicts the cosmological parame-
ters with similar accuracy (relative errors on ΩM and σ8 are
equal to 5.1% and 1.3%) which suggests that the encoder
network has learnt an effective compression scheme which
reduces the maps to summaries without substantial loss of
information.

We also compare the Fisher information content of the log-
normal fields and the summaries. In Fig. 2, we show the
Fisher-forecasted constraints on ΩM and σ8. The Fisher
contours from the lognormal fields and the VICReg sum-
maries are in excellent agreement, demonstrating that the
summaries preserve the Fisher information content of the
maps almost entirely.

0.25 0.30 0.35

ΩM

0.76

0.78

0.80

0.82

0.84

σ
8

0.76 0.80 0.84

σ8

Fisher Forecast on
Lognormal Maps

Fisher Forecast on
VICReg Summaries
of Lognormal Maps

Figure 2. Constraints from Fisher forecast on the cosmological
parameters ΩM and σ8 obtained from lognormal overdensity maps
(black dashed line) and from summaries constructed with VICReg
(blue solid line). The results shown on the plot were obtained for a
fiducial cosmology with ΩM = 0.3 and σ8 = 0.8.

3.2. CAMELS

We consider an application of the VICReg method to more
complex data: total matter density maps from two pub-
licly available hydrodynamic simulation suites, IllustrisTNG
(Weinberger et al., 2017; Pillepich et al., 2018) and SIMBA
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(Davé et al., 2019), which implement distinct galaxy for-
mation models and are a part of the CAMELS project
(Villaescusa-Navarro et al., 2021a;b). These maps repre-
sent spatial distribution of baryonic as well as dark mat-
ter within a slice of a given simulation. IllustrisTNG and
SIMBA datasets contains 15,000 different maps each (1000
hydrodynamic simulations with 15 maps per simulation).
We examine the efficiency of self-supervised summaries
derived from these maps in conducting parameter inference.

VICReg Set-up: We modify the notion of two different
views to represent total mass density maps from two dif-
ferent slices of the same simulation, rotated or flipped at
random during training. This should enable the encoder
network to learn relevant cosmological information from
the maps and become insensitive to random spatial varia-
tions in the slices. We also find it helpful to modify the
VICReg loss such that each batch includes 5 pairs of differ-
ent ‘views’ from each simulation, as opposed to including
a single pair per simulation (or per set of cosmological pa-
rameters). Since the CAMELS maps have more complexity
than the lognormal maps, this allows the encoder network
to learn from more variations.

Due to the high computational cost of running hydrody-
namic simulations, IllustrisTNG and SIMBA have smaller
size than the lognormal maps dataset used in Sec. 3.1, so
we reserve more data for validation and testing purposes:
70% of the simulations for training, 20% for validation, and
the remaining 10% for testing.

We use ResNet-18 (He et al., 2016; Paszke et al., 2019a)
as the encoder which compresses the 256 × 256 maps to
summaries of length 128. The inference network used for
parameter inference is a simple fully-connected 2-layer neu-
ral network, with 512 units in each layer.

We train the encoder for 150 epochs with AdamW optimizer
with initial learning rate 10−3, which is multiplied by a
factor of 0.3 when the validation loss plateaus for 10 epochs.
The weights λ, µ, ν in the loss function are set to 25, 25,
and 1, respectively. The inference network uses the same
optimizer specifications with initial learning rate 7× 10−4.
For both the encoder and the inference network, we save the
models which perform best on the validation set.

Results: Figure 3 shows the predicted values of ΩM (left
panel) and σ8 (right panel) against the true values for a sub-
set of maps from the test set for the IllustrisTNG suite, with
the error bars corresponding to predicted 1σ uncertainties
(the corresponding plot for the SIMBA suite is shown in
Appendix A). It can be seen that the inferred parameters
provide a fairly accurate and unbiased estimate for the true
parameters. Trained directly on the VICReg summaries, the
inference model is able to infer the cosmological parameters
with percent-level accuracy: the relative errors on ΩM and

σ8 are 3.8% and 2.5% respectively for the SIMBA suite,
and 3.7% and 1.9% for the IllustrisTNG suite. We find
that performing field-level inference on the matter density
maps with an equivalent (ResNet-18) supervised model re-
sults in similar constraints on the cosmological parameters:
the relative errors on ΩM and σ8 are 3.3% and 2.3% re-
spectively for the SIMBA suite and 3.3% and 1.8% for the
IllustrisTNG suite. These results suggest that, despite mas-
sive reduction in the size and dimensionality of the data, the
VICReg encoder network learns a near-optimal compression
scheme.
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Figure 3. Predicted means and 1-σ uncertainties of cosmological
parameters ΩM and σ8 compared to the true values of the parame-
ters for total matter density maps from IllustrisTNG simulations.
Predictions for the means and variances of the parameters were
obtained by training simple inference neural network on VICReg
summaries.

4. Conclusions
We have introduced the use of self-supervised machine
learning for cosmological data compression and parame-
ter inference. On applying our method to mock data with a
tractable likelihood – lognormal random overdensity fields
– we showed that parameter inference on the compressed
data summaries saturates the theoretical Fisher information
content. Deploying the method to more realistic data – total
matter density maps based on hydrodynamic simulations
from the CAMELS project – we found that, even for this
more complex dataset of a smaller size (in terms of the
number of simulations available for training), our method is
able to construct informative summaries that achieve param-
eter inference performance on par with a fully-supervised
baseline.

While follow-up studies are necessary before deploying our
pipeline on real cosmological observations, with the influx
of large amounts of complex, high-dimensional survey data
and simulations products, as well rapid advances in machine
learning, self-supervised learning methods such as VICReg
offer a promising way to enable fast, efficient, and robust
cosmological analyses.
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Software and Data
Code used to reproduce the results of this paper is avail-
able at https://github.com/AizhanaAkhmet/
SSL_for_Cosmology. This research made exten-
sive use of the Jupyter (Kluyver et al., 2016),
Matplotlib (Hunter, 2007), Numpy (Harris et al., 2020),
powerbox (Murray, 2018), pyccl1 (Chisari et al., 2019),
Pylians (Villaescusa-Navarro, 2018), PyTorch (Paszke
et al., 2019b), PyTorch-Lightning (Falcon et al.,
2020), and Scipy (Virtanen et al., 2020) packages.
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Figure 4. Predicted means and 1-σ uncertainties of cosmological parameters ΩM and σ8 compared to the true values of the parameters for
total matter density maps from SIMBA simulations. Predictions for the means and variances of the parameters were obtained by training
simple inference neural network on VICReg summaries.
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