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Abstract
Galaxies co-evolve with their host dark matter
halos. Models of the galaxy-halo connection, cal-
ibrated using cosmological hydrodynamic simu-
lations, can be used to populate dark matter halo
catalogs with galaxies. We present a new method
for inferring baryonic properties from dark matter
subhalo properties using message-passing graph
neural networks (GNNs). After training on sub-
halo catalog data from the Illustris TNG300-1 hy-
drodynamic simulation, our GNN can infer stellar
mass from the host and neighboring subhalo posi-
tions, kinematics, masses, and maximum circular
velocities. We find that GNNs can also robustly
estimate stellar mass from subhalo properties in
2d projection. While other methods typically
model the galaxy-halo connection in isolation, our
GNN incorporates information from galaxy envi-
ronments, leading to more accurate stellar mass
inference.

1. Introduction
In the current ΛCDM paradigm of hierarchical galaxy for-
mation, the galaxy-halo connection is crucial for under-
standing how galaxies form and evolve, and for constraining
the small-scale clustering of matter (Somerville & Davé,
2015; Wechsler & Tinker, 2018; Vogelsberger et al., 2020).
Techniques for modeling the co-evolution of galaxies and
dark matter range from simple, non-parametric approaches
to full-physics magnetohydrodynamic simulations which
require > 108 CPU hours of computation (e.g., Vale & Os-
triker, 2004; Pillepich et al., 2018). Detailed simulations
contribute important insights into galaxy formation, but due
to their complexity and heavy computational costs, they are
hard to analyze and cannot be performed for cosmologically
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significant volumes. Machine learning (ML) is a natural
option for making progress on both of these problems.

We present an equivariant Graph Neural Network (GNN),
which takes as its input a graph composed of halos linked on
a linking scale of 5 Mpc, and predicts baryonic properties.
The GNN incorporates the effects of a galaxy’s environment,
thereby improving the prediction of its baryonic properties
compared to traditional methods. We are also able to train
a network on the Illustris TNG300-1 box in 10 minutes on
a single NVIDIA A10G GPU; inference takes one second.
In this work, we focus on estimating stellar mass from a
catalog of subhalo positions, velocities, Mhalo, and Vmax.

2. Related work
The connection between galaxies and their dark matter halos
has been characterized via abundance matching or halo occu-
pation distribution (HOD) models of central halos (Berlind
& Weinberg, 2002; Wechsler et al., 2002), conditional lumi-
nosity or mass functions (Yang et al., 2003; Moster et al.,
2010), subhalo abundance matching (Kravtsov et al., 2004;
Vale & Ostriker, 2004; Conroy et al., 2006), and empiri-
cal models of the galaxy-halo connection (e.g., Reddick
et al., 2013; Behroozi et al., 2019). Several works have
also attempted to perform abundance matching or paint
baryons (i.e., stars) onto dark matter maps by using classi-
cal machine learning algorithms (e.g., Kamdar et al., 2016;
Agarwal et al., 2018; Calderon & Berlind, 2019) and/or neu-
ral networks (e.g., Zhang et al., 2019; Moster et al., 2021;
Mohammad et al., 2022).

In general, these previous methods treat halo/galaxy systems
as unrelated entities with no formation history. To rectify
this, Villanueva-Domingo et al. (2022) construct mathemati-
cal graphs to represent group halos, and train a GNN to learn
the central halo mass, which was later applied to estimate the
halo masses of local Group galaxies (Villanueva-Domingo
et al., 2021). GNNs have also been successfully used to
model the dependence of galaxy properties on merger his-
tory (e.g., Jespersen et al., 2022; Tang & Ting, 2022), and
generate synthetic galaxy catalogs (Jagvaral et al., 2022).

In cosmology, several works have already demonstrated
the representational power of GNNs, and have used it
for simulation-based inference (likelihood-free inference).
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Figure 1. Cosmic graph of a TNG300 subvolume spanning approx-
imately 45 Mpc. Subhalos live on nodes and are colored by their
logarithmic subhalo mass. Edges are formed between pairs of
subhalos separated by less than the linking length of 5 Mpc.

Villanueva-Domingo & Villaescusa-Navarro (2022) em-
ploy GNNs to infer the cosmological parameters Ωm and
σ8, using 3d galaxy positions and stellar properties from
the CAMELS simulation suite (Villaescusa-Navarro et al.,
2021). Makinen et al. (2022) show that GNNs can optimally
extract and compress catalog data for cosmological parame-
ter inference. Shao et al. (2023) and de Santi et al. (2023)
train GNNs to infer cosmological parameters from dark
matter-only simulations, and then validate their robustness
on other N -body and hydrodynamic simulations.

3. Cosmic graphs
3.1. Simulation data

We use SUBFIND z = 0 subhalo catalogs (Springel et al.,
2001) derived from the Illustris TNG300-1 hydrodynamic
simulation (Nelson et al., 2019b; Pillepich et al., 2019). We
split the full cosmological box into 63 = 216 subvolumes
in order to fit into 16 GB of memory, such that each sub-
volume is about (50 Mpc)3. For consistency with the TNG
simulations, we adopt the Planck Collaboration et al. (2016)
cosmology and set H0 = 67.74 km s−1 Mpc−1.

We select unflagged subhalos that have more than 50 star
particles, log(M⋆/M⊙) > 9, and log(Mhalo/M⊙) > 10.
Due to cosmic variance, some subvolumes only have a few
hundred subhalos, while others have thousands. In Figure 1,
we show an example of a typical subvolume.

3.2. Equivariant graph neural networks

We construct a mathematical graph for each TNG300 sub-
volume, such as the one depicted in Figure 1. We designate
Vi = (xi,vi,Mhalo,i, Vmax,i) as the eight node features.
Subhalos within a linking length of L = 5 Mpc are con-
nected with edges. Subvolumes are padded by 2.5 Mpc on
each side, such that subvolumes do not share connections
that would be relevant for the linking length. We allow nodes
to be connected to themselves (i.e., self-loops). On each
edge Eij , we compute three features: the squared Euclidean
distance dij ≡ ||xi − xj ||, the inner product between unit
vectors ei · ej , and the inner product between unit vectors
ei · ei−j , where unit vectors ei ≡ (xi − x̄)/||xi − x̄||)
are defined using positions xi relative to the centroid of the
point cloud distribution x̄, and ei−j is the unit vector in the
direction of xi − xj .

We use a message-passing GNN based on interaction net-
works (Battaglia et al., 2016; 2018), similar to the model
used by Villanueva-Domingo et al. (2022). By design, the
GNN is equivariant to permutations and invariant under the
E(3) group action, i.e., invariant to rotations, reflections,
and translations. For more details about equivariant GNNs,
see the appendices of Garcia Satorras et al. (2021) and
Sections 3.1 and 3.2 of Villanueva-Domingo & Villaescusa-
Navarro (2022). We aggregate layer inputs at each node
by max pooling over information from neighboring nodes.1

Our GNN has one set of fully connected layers with 256
latent channels and 128 hidden channels. We predict two
quantities for each node, which correspond to the logarith-
mic stellar mass yi ≡ log(M⋆,i/M⊙) and the logarithmic
variance, log Σi (i.e., the logarithm of the squared uncer-
tainty on stellar mass).

3.3. Optimization

Our loss function is composed of two terms: the mean
squared error on the logarithmic stellar mass ||ŷ−y||2, and
the squared difference between the predicted and measured
variance ||Σ̂− (ŷ − y)2||2. The latter term ensures that the
variance is appropriately estimated (see Moment Networks,
described in Section 2 of Jeffrey & Wandelt, 2020). We
stabilize training by taking the logarithm of each loss term
before summing them. We monitor the loss as well as the
root mean squared error (RMSE) on log(M⋆/M⊙).

We perform k = 6-fold cross-validation. For each fold, we
train on 180 subvolumes and validate on 36 subvolumes,
such that the validation set forms a ∼ 50× 300× 300 Mpc3

subbox. We augment the training data set by adding random
noise, sampled from a normal distribution with 10−5 times

1We do not find significant improvements by using a concate-
nation of sum, max, mean, and variance aggregations, or by using
learnable aggregation functions.
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Figure 2. Predicted stellar mass versus true stellar mass for the TNG300 data. From left to right, we show results for a subhalo abundance
matching (SHAM) model, three random forest (RF) models, and our 3d GNN trained using x, v, Mhalo, and Vmax. We also report the
scatter in the reconstructed log(M⋆/M⊙).

the standard deviation, for each node variable. Based on a
preliminary hyperparameter search, we implement a simple
optimization schedule over a total of 1000 epochs using
the AdamW optimizer (Kingma & Ba, 2014; Loshchilov
& Hutter, 2017) and a batch size of 36. We begin with a
learning rate of 10−2 and weight decay of 10−4, and then
decrease both by a factor of 5 at 500 epochs, and again
decrease both by a factor of 5 at 750 epochs. We inspect the
training and validation losses to ensure that the optimization
is converged and does not overfit the training data.

4. Results
Overall, we find that the GNN can infer the stellar mass from
subhalo properties with remarkable accuracy. We recover
the galaxy stellar mass to within RMSE = 0.129 dex of its
simulated value by using a GNN. The predictions are largely
unbiased as a function of mass.

4.1. Comparisons against baseline models

In Figure 2, we compare the performance of different mod-
els trained and cross-validated on the same TNG300 data set.
The panels show, from left to right: (a) a subhalo abundance
matching (SHAM) model, (b) a random forest (RF) trained
using Mhalo as input, (c) a RF trained using Vmax, (d) a RF
trained using both Mhalo and Vmax, and (e) a GNN trained
using 3d positions, 3d velocities, Mhalo, and Vmax. In Ta-
ble 1, we list performance metrics for various RF and GNN
models, including the RMSE, mean average error (MAE),
normalized median absolute deviation (NMAD),2 Pearson
correlation coefficient (ρ), correlation of determination (R2),
bias, and outlier fraction (> 3× NMAD).

The SHAM model constructs separate monotonic relation-
ships between Mhalo or Vmax and M⋆ for centrals and satel-
lites. Another difference between the SHAM model and
other approaches considered here is the former’s explicit

2We define NMAD(x) ≡ k · median(|x − median(x)|)),
where k ≈ 1.4826 ensures that the NMAD and standard deviation
are equal for a normally distributed x.

treatment of subhalo centrality. In order to facilitate an
apples-to-apples comparison, we also train an abundance
matching (AM) model that does not distinguish between
satellites and centrals; however the AM model performs
considerably worse than the SHAM counterpart. We note
that the AM and SHAM models are trained and evaluated
on the same data set, so their performance metrics may be
overinflated.

We also train several RF models, which serve as reasonable
proxies for AM or conditional luminosity function models
(Calderon & Berlind, 2019). By comparing panels (b) and
(c), we observe that Vmax is more physically connected to
M⋆ than Mhalo, in agreement with previous findings (i.e.,
Conroy et al. 2006; Reddick et al. 2013; we find this to be
true for the RF, AM, and SHAM models). A RF trained on
both Mhalo and Vmax provides an even better reconstruction
(RMSE = 0.148 dex).

Ultimately, we find that the GNN strongly outperforms all
baseline models. While the GNN does not distinguish be-
tween centrals and satellites, it may be able to learn whether
a given subhalo is a central based on surrounding subhalo
properties (see Section 5.2).

4.2. Centrals versus satellites

Satellite dark matter halos are preferentially stripped relative
to stars in a host halo’s tidal field (Smith et al., 2016). In
Appendix A, we show the stellar mass-halo mass relation for
satellite and central galaxies in TNG300 (Figure 3). Indeed,
we observe that satellite galaxies exhibit significantly more
dispersion than centrals M⋆–Mhalo relation. Our 3d GNN
is also worse at predicting log(M⋆/M⊙) for satellites than
for centrals (see bottom two rows of Table 1), but this is due
to the inherently larger scatter in the satellite-halo relation.
We find that there is an overall negative bias for satellites
and and positive bias for centrals, because the GNN must
learn separate offset relations for both centrals and satellites.
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Table 1. Cross-validation metrics for the AM, SHAM, RF, and GNN models discussed in the text. The GNN trained using positions,
velocities, Mhalo, and Vmax achieves the best metrics (shown in bold) in nearly every category. The last two rows report metrics for the 3d
GNN model, except that only central and satellite subhalos are selected from the cross-validation set. We note that the AM/SHAM models
are trained and evaluated on the same data set. For RF and GNN models, we repeat the entire training and cross-validation experiment
three times; the scatter is too small to be shown in the displayed significant figures for all columns except the bias and outlier fraction.

Model RMSE MAE NMAD Pearson ρ R2 Bias Outlier fraction
(dex) (dex) (dex) (10−3 dex) (%)

AM - Mhalo 0.424 0.327 0.323 0.736 0.472 0.1 3.73
AM - Vmax 0.173 0.150 0.132 0.956 0.912 0.0 1.91
SHAM - Mhalo 0.332 0.231 0.235 0.838 0.677 0.1 6.20
SHAM - Vmax 0.151 0.133 0.115 0.966 0.933 0.0 1.75
RF - Mhalo 0.366 0.308 0.277 0.780 0.606 −0.0± 0.1 2.53± 0.01
RF - Vmax 0.197 0.177 0.152 0.942 0.886 −0.3± 0.0 1.44± 0.01
RF - Mhalo + Vmax 0.148 0.135 0.114 0.967 0.936 0.3± 0.0 1.31± 0.00
GNN (2d projection) 0.135 0.131 0.106 0.973 0.946 −3.9± 2.2 0.68± 0.01
GNN (3d) 0.129 0.125 0.102 0.975 0.951 0.8± 0.6 0.68± 0.00

GNN (3d) - centrals 0.123 0.119 0.097 0.979 0.959 4.6± 0.7 0.67± 0.01
GNN (3d) - satellites 0.138 0.136 0.109 0.968 0.936 −5.0± 0.6 0.58± 0.01

4.3. Cosmic substructure in projection

We also construct cosmic graphs in projection, i.e. projected
coordinates x1 and x2, and radial velocity v3, instead of
the full phase space information (see Appendix B). This
2d GNN model achieves RMSE = 0.135 dex scatter, which
still exceeds the performance of the best RF estimator (see
Table 1). Because the 2d GNN encode projected large scale
structure information, it outperforms the RF models that can
only learn isolated subhalo information.

5. Discussion
We have presented a novel method for populating dark
matter subhalos with galaxy stellar masses. Mathematical
graphs combine individual halo properties and environmen-
tal parameters in an equivariant representation, resulting in
robust predictions for both central and satellite galaxies. As
shown in Table 1 and Figure 2, the cosmic graphs outper-
form random forests trained on Vmax and Mhalo. For galax-
ies with log(M⋆/M⊙) ≥ 9 and log(Mhalo/M⊙) ≥ 10, we
recover the logarithmic stellar mass to within a root mean
squared error (RMSE) of 0.129 dex.

5.1. Inductive biases of GNNs

We note that previous works have employed convolutional
neural networks (CNNs) for painting stars onto dark matter
maps (Zhang et al., 2019; Mohammad et al., 2022). Unlike
abundance matching models and RFs, CNNs are able to rep-
resent local spatial information. However, CNNs and GNNs
have different inductive biases: CNNs are well-suited for
representing fields discretized onto a Cartesian grid, while

GNNs are well-suited for representing objects and relation-
ships between them. Galaxies have small sizes (∼kpc) rela-
tive to their typical separations (∼Mpc), and they interact
with each other (and their surrounding media) through multi-
ple physical mechanisms (e.g., gravitational attraction, tides,
ram pressure, etc). Therefore, cosmic structures naturally
conform to a graphical representation, motivating our use
of GNNs in this work.

5.2. Galaxy environments

We note that a GNN with no edges except self-loops would
essentially model the galaxy-halo connection in isolation;
all environmental information is contained and passed along
the edges. However, if we remove self-loops from the GNN,
then the GNN is still able to infer log(M⋆/M⊙) to within
RMSE ∼ 0.145 dex. A GNN without self-loops must es-
timate galaxy stellar mass solely from neighboring halo
information, which demonstrates that galaxy environments
are informative for modeling the galaxy-halo connection.

We find that the GNN with max-pooling aggregation func-
tion achieves 0.001 dex lower RMSE than a GNN with
sum-pooling. This result suggests that the GNN selects the
largest value for some combination of Mhalo, Vmax, and
distance to neighboring subhalos in order to best make pre-
dictions. We can speculatively interpret this as evidence that
the largest and most nearby subhalo is most informative to
a GNN. The largest subhalo might dominate environmental
effects (e.g. tides and ram pressure) and control a given sub-
halo’s stellar mass. Meanwhile, the summed information
should capture all of the forces, and we expect it to be more
robust or transferable across domains. This interpretation
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requires addition testing and an exhaustive hyperparameter
search over GNN architecture and optimization procedures,
which we aim to do in a follow-up work.3

5.3. Applications to observations

The strong performance of 2d GNNs (§4.3) is promising for
facilitating comparisons to observations beyond the Local
Group, where we can only reliably measure projected posi-
tions and line-of-sight velocities rather than full phase space
information. Our method can be used to quickly estimate
galaxy properties of constrained N -body (McAlpine et al.,
2022) and Gpc-scale N -body simulated volumes (Garrison
et al., 2018; Maksimova et al., 2021) for comparison with
wide-area galaxy surveys in the low-redshift Universe (Ruiz-
Macias et al., 2021; Carlsten et al., 2022; Darragh-Ford et al.,
2022; Driver et al., 2022; Wu et al., 2022).

5.4. Limitations and caveats

While we have shown that the GNN outperforms other
methods, this demonstration does not definitively prove that
GNNs are exploiting environmental information. Indeed,
we have used a linking length of 5 Mpc, but this hyperpa-
rameter may be suboptimal and should be tuned. It is also
possible that intrinsic scatter imposes a RMSE floor (i.e.,
due to the “butterfly effect” in cosmological simulations
Genel et al., 2019), although GNN results using merger
trees have shown that galaxy stellar mass can be recovered
to even lower scatter (Jespersen et al., 2022). Finally, it may
be that merger history is more important than environmental
information, and that the clustering information learned by
a GNN only incrementally improves performance relative
to other approaches.

Our results will depend on choice of halo finder, i.e. if
we were to use an alternative to the SUBFIND algorithm
(e.g. ROCKSTAR; Behroozi et al. 2013). We have not tested
our results using different halo finding tools, and it is un-
clear whether a GNN trained using one halo finder catalog
will properly generalize to another catalog produced by a
different halo finder. We also note that our results, while
promising, must be tested on dark matter only simulations
with halo catalogs matched to the hydrodynamic simulation
catalogs before we can rely on GNNs to paint galaxies onto
dark matter subhalos.

Additionally, domain adaptation will likely be needed to
ensure simulated results can transfer to other simulations
(e.g., while varying cosmological parameters; Villaescusa-
Navarro et al. 2021) or to observations (e.g, Ciprijanovic
et al., 2023). As a preliminary test, we repeat our experi-
ment by training on TNG300 and validating on TNG50 data,

3The linking length is a particularly important hyperparameter.
In our preliminary tests, we have found 5 Mpc to give good results.

and vice versa; in both cases the results are poor (> 0.2 dex).
However, by training on a subset both simulations, we
can recover log(M⋆/M⊙) to ∼ 0.13 dex for TNG300 and
∼ 0.14 dex for TNG50 (Nelson et al., 2019a;b). This test
suggests that cross-domain applications, such as transfer-
ring GNN results from simulations to observations, will
necessitate some form of domain adaptation.

Software and Data
Our code is completely public on Github: https:
//github.com/jwuphysics/halo-gnns/tree/
halos-to-stars. We have used the following
software and tools: numpy (Harris et al., 2020),
matplotlib (Hunter, 2007), pandas (Wes McK-
inney, 2010), pytorch (Paszke et al., 2019), and
pytorch-geometric (Fey & Lenssen, 2019).

We only use public simulation data from Illustris, which can
be downloaded from https://www.tng-project.
org/data/.
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López-Sánchez, Á. R., Loveday, J., Mahajan, S., Meyer,
M., Moffett, A. J., Napolitano, N. R., Norberg, P., Owers,
M. S., Radovich, M., Raouf, M., Peacock, J. A., Phillipps,
S., Pimbblet, K. A., Popescu, C., Said, K., Sansom, A. E.,
Seibert, M., Sutherland, W. J., Thorne, J. E., Tuffs, R. J.,
Turner, R., van der Wel, A., van Kampen, E., and Wilkins,
S. M. Galaxy And Mass Assembly (GAMA): Data Re-
lease 4 and the z ¡ 0.1 total and z ¡ 0.08 morphological
galaxy stellar mass functions. MNRAS, 513(1):439–467,
June 2022. doi: 10.1093/mnras/stac472.

Fey, M. and Lenssen, J. E. Fast Graph Rep-
resentation Learning with PyTorch Geometric, 5
2019. URL https://github.com/pyg-team/
pytorch_geometric.

Garcia Satorras, V., Hoogeboom, E., and Welling, M. E(n)
Equivariant Graph Neural Networks. arXiv e-prints, art.
arXiv:2102.09844, February 2021. doi: 10.48550/arXiv.
2102.09844.

Garrison, L. H., Eisenstein, D. J., Ferrer, D., Tinker, J. L.,
Pinto, P. A., and Weinberg, D. H. The Abacus Cosmos:
A Suite of Cosmological N-body Simulations. ApJS, 236
(2):43, June 2018. doi: 10.3847/1538-4365/aabfd3.

Genel, S., Bryan, G. L., Springel, V., Hernquist, L., Nelson,
D., Pillepich, A., Weinberger, R., Pakmor, R., Marinacci,
F., and Vogelsberger, M. A Quantification of the Butterfly
Effect in Cosmological Simulations and Implications for
Galaxy Scaling Relations. ApJ, 871(1):21, January 2019.
doi: 10.3847/1538-4357/aaf4bb.

http://iopscience.iop.org/article/10.1088/2632-2153/acca5f
http://iopscience.iop.org/article/10.1088/2632-2153/acca5f
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric


The galaxy-environment connection through equivariant GNNs

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. Array programming with NumPy. Na-
ture, 585(7825):357–362, September 2020. ISSN 1476-
4687. doi: 10.1038/s41586-020-2649-2. URL https:
//doi.org/10.1038/s41586-020-2649-2.

Hunter, J. D. Matplotlib: A 2D Graphics Environment.
Computing in Science & Engineering, 9(3):90–95, 2007.

Jagvaral, Y., Lanusse, F., Singh, S., Mandelbaum, R., Ra-
vanbakhsh, S., and Campbell, D. Galaxies on graph
neural networks: towards robust synthetic galaxy cata-
logs with deep generative models. arXiv e-prints, art.
arXiv:2212.05596, December 2022. doi: 10.48550/arXiv.
2212.05596.

Jeffrey, N. and Wandelt, B. D. Solving high-dimensional
parameter inference: marginal posterior densities & Mo-
ment Networks. arXiv e-prints, art. arXiv:2011.05991,
November 2020. doi: 10.48550/arXiv.2011.05991.

Jespersen, C. K., Cranmer, M., Melchior, P., Ho, S.,
Somerville, R. S., and Gabrielpillai, A. Mangrove: Learn-
ing Galaxy Properties from Merger Trees. ApJ, 941(1):7,
December 2022. doi: 10.3847/1538-4357/ac9b18.

Kamdar, H. M., Turk, M. J., and Brunner, R. J. Machine
learning and cosmological simulations - II. Hydrodynam-
ical simulations. MNRAS, 457(2):1162–1179, April 2016.
doi: 10.1093/mnras/stv2981.

Kingma, D. P. and Ba, J. Adam: A Method for Stochas-
tic Optimization. arXiv e-prints, art. arXiv:1412.6980,
December 2014. doi: 10.48550/arXiv.1412.6980.

Kravtsov, A. V., Berlind, A. A., Wechsler, R. H., Klypin,
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Spergel, D. N., Somerville, R. S., Dave, R., Pillepich,
A., Hernquist, L., Nelson, D., Torrey, P., Narayanan, D.,
Li, Y., Philcox, O., La Torre, V., Maria Delgado, A.,
Ho, S., Hassan, S., Burkhart, B., Wadekar, D., Battaglia,
N., Contardo, G., and Bryan, G. L. The CAMELS
Project: Cosmology and Astrophysics with Machine-
learning Simulations. ApJ, 915(1):71, July 2021. doi:
10.3847/1538-4357/abf7ba.

Villanueva-Domingo, P. and Villaescusa-Navarro, F. Learn-
ing Cosmology and Clustering with Cosmic Graphs. ApJ,
937(2):115, October 2022. doi: 10.3847/1538-4357/
ac8930.

Villanueva-Domingo, P., Villaescusa-Navarro, F., Genel, S.,
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Figure 3. The stellar mass-halo mass relation in TNG300 for satel-
lite and central galaxies.
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A. The stellar mass-halo mass relation for
satellites and centrals

In Figure 3, we show halo masses and stellar masses for
central galaxies (red) and satellites (blue) from the TNG300
SUBFIND catalogs. Our GNN is able to learn the offset
relationships for both central and satellite subhalos.

Figure 4. A graph of galaxies in projection, analogous to Figure 1.
Subhalos now connected with edges if their projected distances
are less than 5 Mpc.

B. Cosmic graphs in projected coordinates
In §4.3, we trained a GNN to learn the galaxy-halo connec-
tion using projected positions and radial velocity, in addition
to Mhalo and Vmax. In Figure 4, we show a projected ver-
sion of the subvolume that appeared in Figure 1.


