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Abstract
Machine learning method has been suggested and
applied to the parameter estimation in binary mi-
crolensing events, as a replacement of the time-
consuming, sampling-based approach. However,
the equal-step time series that is required by exist-
ing attempts are rarely realized in ground-based
surveys. In this work, we apply the neural con-
trolled differential equation (neural CDE) to han-
dle microlensing light curves of realistic data qual-
ity. Our method can infer binary parameters ef-
ficiently and accurately out of light curves with
irregular time-steps (including large gaps). Our
work also demonstrates the power of neural CDE
and other advanced machine learning methods in
identifying and characterizing transient events in
ongoing and future ground-based time domain
surveys, given that it is common for astronomical
time series from the ground to have irregular sam-
pling and data gaps. The extended journal paper
can be found at arXiv:2206.08199.

1. Introduction
Irregular time series are common in astronomical observa-
tions from the ground. Such irregularities complicate the
application of machine learning methods. The standard
method, recurrent neural network (RNN, Goodfellow et al.,
2016), requires the time series to be regularly sampled. In
order to apply RNNs, one then needs to transform the origi-
nal, unevenly sampled time series into evenly sampled ones
through imputation or interpolation (e.g., Charnock & Moss,
2017), but this may destroy or introduce false information
into the original data (Che et al., 2018). Alternatively, one
may incorporate the time steps between observations into
the RNN (e.g., Naul et al., 2018), but this makes strong
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assumptions about the temporal evolution of the underlying
process that may not be applicable to more general situations
(Rubanova et al., 2019).

The neural controlled differential equation, or neural CDE,
has recently been proposed as a general method to deal with
partially observed, irregularly sampled time series (Kidger
et al., 2020; Kidger, 2022). Neural CDE originates from
the combination of neural differential equations (Chen et al.,
2018; Rubanova et al., 2019) and controlled differential
equations (Lyons et al., 2007), and it handles irregular time
steps and missing values by approximating the underlying
process as a differential equation. In this work, we apply
neural CDE to the parameter estimation in binary microlens-
ing light curves with irregular time steps and long gaps, as a
demonstration of its power in the identification and charac-
terization of astronomical transient events in ground-based
time domain surveys.

Gravitational microlensing has long been suggested as a
powerful technique in detecting faint and even dark objects
(Einstein, 1936; Paczynski, 1986). In recent years, it has
been successfully used to the detection and characterization
of > 100 exoplanets and many more stellar binaries (e.g.,
Mao & Paczynski, 1991; Gaudi, 2012). The interpretation of
a microlensing light curve originating from multiple lenses
can be very challenging, due to the time-consuming compu-
tation of the light curve as well as the pathological likelihood
landscape of the high-dimensional parameter space. As a
result, the current analysis of microlensing events is still
case-by-case, and each event requires hundreds of CPU
hours as well as the supervision of domain experts (e.g.,
Zang et al., 2022).

Machine learning has been proposed as a promising solu-
tion to the efficient modeling of binary microlensing light
curves (Vermaak, 2003; Zhang et al., 2021), in addition to
its application to the identification of microlensing events
(Wyrzykowski et al., 2015; Godines et al., 2019; Mróz,
2020). However, the existing methods for parameter in-
ferences are not readily applicable to realistic microlensing
data. In particular, Zhang et al. (2021) trained and evaluated
their deep learning network on simulated light curves from
the Roman microlensing survey (Penny et al., 2019), which
contained ∼ 104 time stamps with equal steps. Ongoing
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microlensing surveys from the ground, such as the Korea Mi-
crolensing Telescope Network (KMTNet Kim et al., 2016),
see light curves with lower signal-to-noise (S/N) ratios and
irregular samplings (including data gaps). These realistic
light curves cannot be processed in the framework of Zhang
et al. (2021).

In this paper, we develop the first pipeline that can efficiently
and accurately perform parameter inference in binary mi-
crolensing events of realistic data quality. The proposed
pipeline is illustrated in Fig. 1. A neural CDE is used to
extract features from light curves. The features are then fed
into a mixture density network (MDN, Bishop & Nasrabadi,
2006) to predict the posterior density of the microlensing
parameters. We show with experiments that our approach
is flexible and robust to irregular sampling and data gaps.
Our work paves the way toward applying deep learning to
realistic microlensing data and serves as a potentially uni-
versal framework for learning from irregular astronomical
time series.

2. Data
A standard binary microlensing light curve can be fully
described by the following parameters: time of closest ap-
proach (t0), impact parameter (u0), Einstein ring crossing
time (tE), the source size scaled to the Einstein ring (ρ),
the binary mass ratio (q), binary projected separation (s),
angle from the binary lens axis to the direction of the source
trajectory (α), the source flux fraction (fs), and the total
baseline magnitude (m0). Among these parameters, m0

will be subtracted in the preprocessing step, and thus the
exact choice has no effect. Parameters t0 and tE charac-
terize the temporal evolution of the source trajectory and
can be inferred separated by a semantic segmentation al-
gorithm, the full description of which will be provided
in a future work. We thus set t0 = 0 and tE = 1 in
the present work. We also fix ρ = 10−3. For the cho-
sen (effective) cadence of observations, the finite-source
effect is not expected to be detected, and even if it is,
the localized finite-source feature is not expected to af-
fect our inference of other parameters. The remaining pa-
rameters are sampled according to u0 ∼ Uniform(0, 1),
q ∼ LogUniform(10−3, 100), s ∼ LogUniform(0.3, 3),
α ∼ Uniform(0, 360), and fs ∼ LogUniform(10−1, 100).

We use the VBBL algorithm (Bozza et al., 2018) through the
MulensModel (Poleski & Yee, 2019) package to generate
binary microlensing light curves. Each light curve composes
of 500 data points, randomly (i.e., irregularly) sampled in
the time interval [−2tE, 2tE] and assigned with Gaussian
noises of S/N=33 in flux. To mimic the missing observa-
tions due to bad weather or telescope failures, we dump data
within a randomly selected window with 1/25 of the total du-
ration. Simulated events without significant binary features

(χ2/d.o.f. < 2 based on the single-lens fit) are filtered. In
the end, six batches of 105 light curves are generated. Five
of them are used as training set, and the remaining one is
split into validation and test sets. For comparison, we have
also produced data sets with equal samplings and irregular
samplings but no gaps.

3. Method
Preprocessing We first preprocess the data before apply-
ing neural CDE. Light curves are subtracted by the base-
line magnitudes and then normalized to obtain a variance
of unity across the training set. To improve the training
speed and reduce the memory requirement, we follow the
approach of Morrill et al. (2021) to down sample the time
series. Specifically, the light curves are fed into a depth-nD

log-signature transform, which outputs a shorter, steadier,
and higher dimensional sequence summarizing the sub-step
information. We set the log-signature depth nD = 3 and
the shortened length l = 100. The output data have v = 5
dimensions.

Neural CDE We then interpolate the processed signal
{(ti, xi)}ni=0, xi ∈ Rv−1 with natural cubic splines, yield-
ing a continuous signal Xt ∈ Rv, t ∈ [t0, tn] with
Xti = (ti, xi). Neural CDE then defines a latent state
zt ∈ Rw, t ∈ [t0, tn] with w = 32 dimensions, whose evo-
lution is described by the differential equation (Kidger et al.,
2020)

zt = zt0 +

∫ t

t0

fθ (zτ ) dXτ for t ∈ (t0, tn] . (1)

Here fθ : Rw → Rwv is a neural network parameterizing
the dynamics and is further controlled by the signal Xt. The
initial value zt0 = ξθ(Xt0) is defined by another neural
network ξθ. The subscript θ denotes the dependence on
the learnable parameters. Intuitively, neural CDE gradually
extracts features from Xt according to a learnt policy fθ,
and stores its knowledge in its latent state zt. The terminal
value ztn is then expected to carry useful information that
is passed to downstream tasks.

MDN Binary microlensing events frequently suffer from
model degeneracies (e.g., Yee et al., 2021). Therefore, the
posterior probability distributions are preferred over certain
values of microlensing parameters in this inference problem
(Zhang et al., 2021). Here we adopt MDN, a neural network
that estimates probability density with a mixture of Gaus-
sians. Compared to the masked autoregressive flow method
of Zhang et al. (2021), MDN provides a straightforward
and efficient alternative with explicit density estimation.
We feed the terminal value ztn from the neural CDE into
the MDN. It outputs the normalized weight πi, mean µi,
and covariance matrix Σi of each of the nG multivariate
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Figure 1. The schematic view of our proposed method. See Section 3 for the detailed description.
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Figure 2. Panels (a)–(e): Comparisons between ground truth and predicted values of microlensing parameters, namely lg q, lg s, u0, α,
and lg fs, respectively, based on 16384 binary light curves. Values corresponding to the global and closest peaks in the marginalized
density distributions are shown in blue and orange, respectively. In each panel, the dashed line in each panel remarks the 1 : 1 line, and
the accuracy of the prediction, measured by rooted mean squared errors (RMSEs), is indicated in the top left. Panel (f): An example
event whose binary anomaly is not covered with data points. Data points are shown as black dots, the input model is shown as the black
dashed curve, and the data gap is marked as the gray shaded region. The red curve shows our model prediction, which matches the input
reasonably well. The input and predicted values of the microlensing parameters are shown as black asterisks in panels (a)–(e). The inset
shows the lensing geometry of both input and predicted models.
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Gaussians. The probability density of the microlensing pa-
rameters, ω ≡ (lg q, lg s, u0, α/180, lg fs), is given by

p(ω|ztn) =
nG∑
i=1

πi(ztn)ϕµi(ztn ),Σi(ztn )(ω), (2)

where ϕµ,Σ denotes the density of a multivariate Gaussian
with mean µ and covariance matrix Σ. For simplicity, we
have assumed the multivariate Gaussians have diagonal co-
variance matrices. This preserves universality as long as nG

is large enough(Bishop & Nasrabadi, 2006). In the current
network, we set nG = 12.

Network Details The initial value network ξθ, the evolu-
tion network fθ and MDN are constructed as residual fully
connected networks with three residual blocks (He et al.,
2016). Each block consists of two fully connected layers
of width 1024. The evolution network has an additional
activation of hyperbolic tangent to rectify the dynamic.

Training We use the ADAM optimizer(Kingma & Ba,
2014) and minimize the empirical negative log likelihood
(NLL) to adjust the model parameters θ. Specifically,

θ = argmin {−Etraining set [ln p(ωtrue|ztn)]} . (3)

The learning rate is set to 10−4 initially and drops one
percent after each epoch. Training samples are divided into
batches of size 128 with label (lg q, lg s, u0, α/180, lg fs).
After three days of training on one NVIDIA Tesla V100
GPU, the average NLL loss drops to -8.76 on the validation
set of size 1024. The optimized model is then used to infer
the density of microlensing parameters (Equation 2).

4. Results & Discussion
We test our model on a set of 16,384 light curves generated
in the same way as those in the training sample. The compar-
isons between the predicted and the ground truth parameter
values are shown in panels (a)–(e) of Fig. 2. We follow
Zhang et al. (2021) and adopt the peak in the marginalized
density that is closest to the ground truth as the prediction of
our model. This is justified on two bases. First, the closest
peak is usually also the global peak of the density distribu-
tion.1 Furthermore, the main purpose of our model is to
identify all possible parameter sets that can closely fit the
light curve. Once this purpose is achieved, one may employ
the traditional optimization method to more efficiently lo-
cate the best solution(s). The accuracy of the prediction is
measured by the root-mean-squared error (RMSE) between
the ground truth and the prediction. For each microlensing
parameter, the value of the RMSE is indicated in the upper
left corner of the corresponding panel.

1To be quantitative, this is true in 90.6% and 86.5% of the test
cases for parameters lg q and lg s, respectively.

Overall, our method can predict the microlensing parameters
at high accuracy. Specifically, we can achieve typical frac-
tional uncertainties of 43.5% and 9.9% on the mass-ratio q
and the projected separation s, respectively. Compared to
Zhang et al. (2021), which trained and evaluated on light
curves consisting of 104 data points with S/N=200 and reg-
ularly sampled within the same time interval, our model
achieves a comparable performance and less biased results
based on light curves of more realistic quality (i.e., irreg-
ular sampling (including gaps) and orders of magnitude
less data points). The achieved accuracy is high enough
to ensure statistical analysis of the binary lens distribution.
The prediction can also be used as input into the traditional
sampling-based approach to further refine the parameters.

As an example, we show in the panel (f) of Fig. 2 light
curves of a simulated event whose anomalous feature is af-
fected by the injected data gap. Such a light curve cannot be
properly analyzed via the standard RNN approach, whereas
our model is able to predict the correct microlensing param-
eters and recover the “missing” anomaly.

Our model can analyze ∼ 100 light curves per second. For a
comparison, the standard modeling based on Markov chain
Monte Carlo (MCMC) approach typically requires the com-
putation of ∼ 104 light curves, each taking ∼ 1 second, in
order for a reasonable sampling of the posterior distribution.
The initial localization of the rough solutions through a grid
search requires even more light curve calculations. Our
method thus remarks a speedup of ≳ 106 over the existing
approach.

5. Summary & Future Work
In this work, we apply the state-of-the-art machine learning
method to the parameter inference in binary-lens microlens-
ing events with realistic data quality. Unlike previous works,
we train and evaluate on light curves that suffer from irregu-
lar sampling and missing data, both of which are frequently
encountered in astronomical observations from the ground
(and sometimes space as well). We show that our method
can predict the key microlensing parameters efficiently and
accurately. In the next step, we will incorporate the methods
to infer the remaining microlensing parameters into the cur-
rent pipeline and apply it to the analysis of real microlensing
events. 2

Irregular samplings and data gaps are common in time do-
main astronomy. Our work showcases the great potential
of neural CDE and other advanced machine learning algo-
rithms in the identification and characterization of astro-
nomical transients, including but not limited to supernova,
variable stars, exoplanet transit, and the coalescence of com-

2This has been implemented. See our journal paper
arXiv:2206.08199 for details.

https://arxiv.org/abs/2206.08199


Parameter Estimation in Realistic Binary Microlensing Light Curves

pact objects due to gravitational wave radiation.
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