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Abstract

We introduce a novel machine learning framework
for estimating the Bayesian posteriors of morpho-
logical parameters for arbitrarily large numbers of
galaxies. The Galaxy Morphology Posterior Esti-
mation Network (GaMPEN) estimates values and
uncertainties for a galaxy’s bulge-to-total light ra-
tio (LB/LT ), effective radius (Re), and flux (F ).
GaMPEN also uses a Spatial Transformer Net-
work (STN) to automatically crop input galaxy
frames to an optimal size before determining their
morphology. Training and testing GaMPEN on
galaxies simulated to match z < 0.75 galaxies
in Hyper Suprime-Cam Wide images, we demon-
strate that GaMPEN can accurately quantify un-
certainties and estimate parameters. GaMPEN
is the first machine learning framework for deter-
mining posterior distributions of multiple morpho-
logical parameters and is also the first application
of an STN to optical imaging in astronomy.

1. Introduction
Galaxy morphology has been shown to be related to many
fundamental properties of the galaxy and its environment, in-
cluding galaxy mass, star formation rate, stellar kinematics,
merger history, cosmic environment, the influence of super-
massive black holes (e.g., Bender et al., 1992; Tremaine
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et al., 2002; Pozzetti et al., 2010; Schawinski et al., 2014;
Huertas-Company et al., 2016; Powell et al., 2017; Dimauro
et al., 2022). Studying the morphology of large samples of
galaxies at different redshifts is crucial in order to under-
stand the physics of galaxy formation and evolution.

Over the last decade, Convolutional Neural Networks
(CNNs) have become increasingly popular for determining
galaxy morphology. From early attempts at using a CNN
to classify galaxies morphologically (e.g., Dieleman et al.,
2015; Huertas-Company et al., 2015) to the largest CNN
produced morphology catalogs currently available (Cheng
et al., 2021; Vega-Ferrero et al., 2021), most CNNs have pro-
vided broad, qualitative classifications rather than numerical
estimates of morphological parameters. By contrast, Tuc-
cillo et al. (2018) used a CNN to estimate the parameters of
a single-component Sérsic fit, though without uncertainties.
Meanwhile, the computation of full Bayesian posteriors for
different morphological parameters is crucial for drawing
scientific inferences that account for uncertainty and thus
are indispensable in the derivation of robust scaling relations
or tests of theoretical models using morphology.

In this contribution, we introduce GaMPEN (the Galaxy
Morphology Posterior Estimation Network), a novel ma-
chine learning framework that estimates the Bayesian poste-
riors for three morphological parameters: the bulge-to-total
light ratio (LB/LT ), the effective radius (Re), and the total
flux (F ). GaMPEN can also automatically crop the input
image frames to an optimal size before morphology de-
termination. This helps GaMPEN focus on the galaxy of
interest at the center of each cutout – while cropping out
most secondary galaxies in the input frame. This allows
us to apply GaMPEN to a wide range of redshifts without
having to worry about optimal cutout sizes – not a trivial
task when applying a machine learning (ML) algorithm to a
new survey without predetermined Re measurements.

To have a robust understanding of the performance, bias,
and limitations of GaMPEN, we train and test GaMPEN
on simulations of galaxy images—the only situation where
we have access to the “ground truth” morphological pa-
rameters of the galaxies. We match our simulations to the
observations of the Hyper Suprime-Cam (HSC) Wide survey
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Figure 1. Diagram outlining the training (left) and inference (right) phases of the GaMPEN workflow.

(Aihara et al., 2018), as this is an obvious application.

2. Description of the Framework
The architecture of GaMPEN consists of an upstream Spatial
Transformer Network (STN) followed by a downstream
CNN, as shown in Figure 5 (Appendix A). STNs, introduced
by Jaderberg et al. (2015), are learnable modules that can
be inserted in CNNs and explicitly allow for the spatial
manipulation of data within the CNN. In GaMPEN, the STN
applies a two-dimensional affine cropping transformation to
the input image, and the transformed image is then passed to
the CNN. Since the STN can be trained with standard back-
propagation, the entire GaMPEN framework can be trained
end-to-end without any separate supervision required for
the STN. The input image, once transformed by the STN,
is passed to the downstream CNN module, as depicted in
Figure 1. This downstream module predicts the posterior
distribution of the bulge-to-total light ratio, effective radius,
and total flux for each input galaxy.

2.1. Prediction of Posteriors

Two primary sources of error contribute to the uncertainties
in the parameters predicted by GaMPEN. The first arises
from errors inherent to the input imaging data (e.g., noise
and PSF blurring), and this is commonly referred to as
aleatoric uncertainty. The second error comes from the lim-
itations of the model being used for prediction (e.g., the
number of free parameters in GaMPEN, the amount of train-
ing data, etc.); this is referred to as epistemic uncertainty.
GaMPEN accounts for both these kinds of uncertainties in
its predictions.

In order to obtain epistemic uncertainties, we treat the
trained model itself as a random variable – because, intu-
itively, there are many possible models that could be trained
from the same training data, D. To predict the posterior, we

need to marginalize over these possible models; and for that
marginalization, we use the Monte-Carlo Dropout (MCD)
technique as introduced by Gal & Ghahramani (2016). Dur-
ing inference, we feed every test image to the trained GaM-
PEN framework 1000 times and collect the outputs. Each
forward pass through GaMPEN samples the approximate
parameter posterior.

To account for aleatoric uncertainties, GaMPEN predicts the
parameters of a multivariate Gaussian distribution N (�,�)
for every input image. � and � are the mean and covari-
ance matrix of the multivariate Gaussian distribution, re-
spectively. Although we would like to use GaMPEN to
predict aleatoric uncertainties, the covariance matrix, �, is
not known a priori. Instead, we train GaMPEN to learn
these values by minimizing the negative log-likelihood of
the output parameters, which is shown at the bottom of Fig-
ure 1. The predicted posterior distributions for a randomly
chosen galaxy in the test set is shown in Figure 2.

2.2. Training & Inference

We train GaMPEN on realistic simulations of galaxies
created using GalSim (Rowe et al., 2015) to match the
properties of z < 0.75 galaxies in the HSC Wide Survey.
We convolved these simulated galaxies with a representa-
tive point spread function (PSF) and added representative
noise based on real HSC-W images. In order to ensure
that the values predicted by GaMPEN are always physical
(0 � LB/LT � 1; Re > 0; F > 0) and have similar ranges,
we pass the training labels through the logit/log transfor-
mations followed by a standard scaler transformation as
depicted in Figure 1. During the inference, the inverse of
these transformations are applied to the predicted values.

One of the most critical adjustable parameters is the dropout
rate – higher dropout rates generally lead networks to esti-
mate higher epistemic uncertainties. Thus, we train GaM-




