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Abstract

We introduce a novel machine learning framework
for estimating the Bayesian posteriors of morpho-
logical parameters for arbitrarily large numbers of
galaxies. The Galaxy Morphology Posterior Esti-
mation Network (GaMPEN) estimates values and
uncertainties for a galaxy’s bulge-to-total light ra-
tio (LB/LT ), effective radius (Re), and flux (F ).
GaMPEN also uses a Spatial Transformer Net-
work (STN) to automatically crop input galaxy
frames to an optimal size before determining their
morphology. Training and testing GaMPEN on
galaxies simulated to match z < 0.75 galaxies
in Hyper Suprime-Cam Wide images, we demon-
strate that GaMPEN can accurately quantify un-
certainties and estimate parameters. GaMPEN
is the first machine learning framework for deter-
mining posterior distributions of multiple morpho-
logical parameters and is also the first application
of an STN to optical imaging in astronomy.

1. Introduction
Galaxy morphology has been shown to be related to many
fundamental properties of the galaxy and its environment, in-
cluding galaxy mass, star formation rate, stellar kinematics,
merger history, cosmic environment, the influence of super-
massive black holes (e.g., Bender et al., 1992; Tremaine
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et al., 2002; Pozzetti et al., 2010; Schawinski et al., 2014;
Huertas-Company et al., 2016; Powell et al., 2017; Dimauro
et al., 2022). Studying the morphology of large samples of
galaxies at different redshifts is crucial in order to under-
stand the physics of galaxy formation and evolution.

Over the last decade, Convolutional Neural Networks
(CNNs) have become increasingly popular for determining
galaxy morphology. From early attempts at using a CNN
to classify galaxies morphologically (e.g., Dieleman et al.,
2015; Huertas-Company et al., 2015) to the largest CNN
produced morphology catalogs currently available (Cheng
et al., 2021; Vega-Ferrero et al., 2021), most CNNs have pro-
vided broad, qualitative classifications rather than numerical
estimates of morphological parameters. By contrast, Tuc-
cillo et al. (2018) used a CNN to estimate the parameters of
a single-component Sérsic fit, though without uncertainties.
Meanwhile, the computation of full Bayesian posteriors for
different morphological parameters is crucial for drawing
scientific inferences that account for uncertainty and thus
are indispensable in the derivation of robust scaling relations
or tests of theoretical models using morphology.

In this contribution, we introduce GaMPEN (the Galaxy
Morphology Posterior Estimation Network), a novel ma-
chine learning framework that estimates the Bayesian poste-
riors for three morphological parameters: the bulge-to-total
light ratio (LB/LT ), the effective radius (Re), and the total
flux (F ). GaMPEN can also automatically crop the input
image frames to an optimal size before morphology de-
termination. This helps GaMPEN focus on the galaxy of
interest at the center of each cutout – while cropping out
most secondary galaxies in the input frame. This allows
us to apply GaMPEN to a wide range of redshifts without
having to worry about optimal cutout sizes – not a trivial
task when applying a machine learning (ML) algorithm to a
new survey without predetermined Re measurements.

To have a robust understanding of the performance, bias,
and limitations of GaMPEN, we train and test GaMPEN
on simulations of galaxy images—the only situation where
we have access to the “ground truth” morphological pa-
rameters of the galaxies. We match our simulations to the
observations of the Hyper Suprime-Cam (HSC) Wide survey
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Figure 1. Diagram outlining the training (left) and inference (right) phases of the GaMPEN workflow.

(Aihara et al., 2018), as this is an obvious application.

2. Description of the Framework
The architecture of GaMPEN consists of an upstream Spatial
Transformer Network (STN) followed by a downstream
CNN, as shown in Figure 5 (Appendix A). STNs, introduced
by Jaderberg et al. (2015), are learnable modules that can
be inserted in CNNs and explicitly allow for the spatial
manipulation of data within the CNN. In GaMPEN, the STN
applies a two-dimensional affine cropping transformation to
the input image, and the transformed image is then passed to
the CNN. Since the STN can be trained with standard back-
propagation, the entire GaMPEN framework can be trained
end-to-end without any separate supervision required for
the STN. The input image, once transformed by the STN,
is passed to the downstream CNN module, as depicted in
Figure 1. This downstream module predicts the posterior
distribution of the bulge-to-total light ratio, effective radius,
and total flux for each input galaxy.

2.1. Prediction of Posteriors

Two primary sources of error contribute to the uncertainties
in the parameters predicted by GaMPEN. The first arises
from errors inherent to the input imaging data (e.g., noise
and PSF blurring), and this is commonly referred to as
aleatoric uncertainty. The second error comes from the lim-
itations of the model being used for prediction (e.g., the
number of free parameters in GaMPEN, the amount of train-
ing data, etc.); this is referred to as epistemic uncertainty.
GaMPEN accounts for both these kinds of uncertainties in
its predictions.

In order to obtain epistemic uncertainties, we treat the
trained model itself as a random variable – because, intu-
itively, there are many possible models that could be trained
from the same training data, D. To predict the posterior, we

need to marginalize over these possible models; and for that
marginalization, we use the Monte-Carlo Dropout (MCD)
technique as introduced by Gal & Ghahramani (2016). Dur-
ing inference, we feed every test image to the trained GaM-
PEN framework 1000 times and collect the outputs. Each
forward pass through GaMPEN samples the approximate
parameter posterior.

To account for aleatoric uncertainties, GaMPEN predicts the
parameters of a multivariate Gaussian distribution N (µ,Σ)
for every input image. µ and Σ are the mean and covari-
ance matrix of the multivariate Gaussian distribution, re-
spectively. Although we would like to use GaMPEN to
predict aleatoric uncertainties, the covariance matrix, Σ, is
not known a priori. Instead, we train GaMPEN to learn
these values by minimizing the negative log-likelihood of
the output parameters, which is shown at the bottom of Fig-
ure 1. The predicted posterior distributions for a randomly
chosen galaxy in the test set is shown in Figure 2.

2.2. Training & Inference

We train GaMPEN on realistic simulations of galaxies
created using GalSim (Rowe et al., 2015) to match the
properties of z < 0.75 galaxies in the HSC Wide Survey.
We convolved these simulated galaxies with a representa-
tive point spread function (PSF) and added representative
noise based on real HSC-W images. In order to ensure
that the values predicted by GaMPEN are always physical
(0 ≤ LB/LT ≤ 1; Re > 0; F > 0) and have similar ranges,
we pass the training labels through the logit/log transfor-
mations followed by a standard scaler transformation as
depicted in Figure 1. During the inference, the inverse of
these transformations are applied to the predicted values.

One of the most critical adjustable parameters is the dropout
rate – higher dropout rates generally lead networks to esti-
mate higher epistemic uncertainties. Thus, we train GaM-
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Figure 2. Examples of predicted posterior distributions for a randomly chosen simulated galaxy. The blue shaded histogram shows the
predictions from GaMPEN and the blue solid lines show the associated probability distribution functions estimated by kernel density
estimation. These are used to calculate the confidence intervals shown in the figure.

Figure 3. The true values of the galaxy parameters plotted against the most probable values predicted by GaMPEN. The black dashed line
marks the y = x diagonal on which perfectly recovered parameters should lie. The color of each hexagon corresponds to the number of
galaxies it contains, as indicated by the colorbar on the right.

PEN with different dropout rates and then calculate their
coverage probabilities, defined as the fraction of the valida-
tion set galaxies where the true value lies within a particular
confidence interval. From our experiments, as shown in
Figure 7 (Appendix A), a dropout rate of 7 × 10−4 yields
coverage probabilities very close to their corresponding con-
fidence levels, resulting in accurately calibrated posteriors.
It is important to note that the inclusion of the full covari-
ance matrix in the loss function (instead of just the diagonal
values) allowed us to incorporate the relationships between
the different output variables and achieve simultaneous cali-
bration of the coverage probabilities for all three variables.

Using an 80-10-10 train-validation-test split, we trained
GaMPEN on the simulated galaxies. The network was
trained using stochastic gradient descent and its hyperpa-
rameters were tuned using the loss obtained on the validation
set. To obtain the posterior distribution of the output vari-
ables, as outlined in Figure 1, we feed each input image, in
the test set 1000 times into the trained GaMPEN framework
with dropout enabled. During each iteration, we collect the
predicted set of µ̂n,t, Σ̂n,t for the tth forward pass. For
each forward pass, we draw a sample from the multivariate
normal distribution N

(
µ̂n,t, Σ̂n,t

)
. The distribution gener-

ated by the collection of all 1000 forward passes represents
the predicted posterior distribution.

3. Results
We first verify that the STN in GaMPEN correctly learns to
transform the input images. Figures 8 and 9 (Appendix A)
show examples of the transformations applied by the STN
of a trained GaMPEN framework to simulated and real HSC
data. As can be seen, the STN learns to apply an optimal
amount of cropping for each input galaxy and focus on the
galaxy of interest at the center of the cutout.

Parameter 68.27% 95.45% 99.73%
Name Conf. Level Conf. Level Conf. Level
LB/LT 71.8% 96.9% 98.9%
Re 68.1% 95.9% 98.3%
F 78.7% 98.2% 99.9%

Mean 72.9% 97.0% 99.0%

Table 1. Coverage Probabilities Obtained on the Test SetIn Table 1, we report the coverage probabilities that GaM-
PEN achieves on the test set. Clearly, GaMPEN produces
well-calibrated and accurate posteriors, consistently close
to the claimed confidence levels.

Figure 3 shows the most probable values (i.e., modes of
the predicted distributions) predicted by GaMPEN versus
the true values for the test set. Most galaxies are clustered
around the line of equality, showing that the most probable
values of the distributions predicted by GaMPEN closely
track the true values of the parameters. Note that among
the larger deviations evident in Figure 3, are predictions
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Figure 4. Residuals of GaMPEN predicted parameter values plotted against the true values. The residual for each parameter is defined as
the difference between the most probable predicted value and the true value. The color of each hexagonal bin corresponds to the number of
galaxies it contains, as shown by the colorbar on the right. To keep the y-axis dimensionless, for Re and F , we plot fractional residuals.

near the limits of LB/LT ; we explore this further below. In
Figure 6 (Appendix B), we show the residual distribution for
the three parameters predicted by GaMPEN. The GaMPEN
prediction of the bulge-to-total ratio is, in ∼ 68.27% of
cases, within 0.1 of the true value – the “typical” error.
The typical error in effective radius is 0.17 arcsec. Typical
uncertainties in the flux are at the 0.1− 1% level.

Figure 4 shows the residuals for each variable when plotted
against the true values of the output variables. The majority
of galaxies are clustered uniformly in areas of low residuals.
There are a few other notable features in this figure. In the
top left panel, the LB/LT residuals are highest near the
limits of LB/LT . This is not very surprising, given that it
is inherently difficult to accurately determine LB/LT when
one component strongly dominates over the other. Larger
residuals in the predictions near the limits of LB/LT lead
to the feature seen in the top left panel of the above figure.
We can use a parameter transformation to mitigate this edge
effect, as described in Appendix B.

The center panel shows that for small values of effective ra-
dius, Re < 1.0 arcsec, there is an increase in the magnitude
of the residuals. Similarly, the bottom-right two panels show

that the residuals of Re and F are systematically higher for
faint galaxies, F < 106 nJy. In other words, GaMPEN sys-
tematically becomes less accurate at predicting the radii of
galaxies when their sizes become comparable to the seeing
of the HSC-Wide Survey (g-band median FWHM ∼ 0.85
arcsec). Similarly, GaMPEN finds it more challenging to
predict the sizes and fluxes of fainter galaxies, just as one
would expect.

The primary advantage of a Bayesian ML framework like
GaMPEN is its ability to predict the posterior distributions
instead of just point estimates. Thus, we would expect such
a network to inherently produce higher uncertainties in re-
gions of the parameter space where residuals are higher. Fig-
ure 10 (Appendix A) show that GaMPEN indeed correctly
predicts broader distributions in regions with the largest
residuals.

4. Conclusions and Future Direction
We have demonstrated that we can use GaMPEN to predict
well-calibrated and accurate posterior distributions for mor-
phological parameters of galaxies. The galaxies with the
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largest residuals are smaller and/or fainter and/or have one
morphological component completely dominating over the
other — situations where morphological analysis is inher-
ently difficult. GaMPEN correctly accounts for this by pre-
dicting correspondingly higher uncertainties (i.e., broader
distributions) in all these above situations. We have also
outlined how the use of an STN allows GaMPEN to crop
out secondary galaxies present in the cutout and focus on
galaxies at the center. We are currently applying GaMPEN
to real HSC galaxies (preliminary results in Appendix C).
We aim to make GaMPEN public by the Fall of 2022.
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A. Supplemental Figures

Figure 5. A schematic diagram of the Galaxy Morphology Posterior Estimation Network. GaMPEN’s architecture consists of a downstream
CNN module preceded by an upstream STN module. The CNN module empowers GaMPEN to estimate posterior distributions of
galaxy morphology parameters. The upstream STN module trains without any extra supervision and learns to apply appropriate cropping
transformations to the input image before passing it on to the CNN. The numbers below each layer refer to the number of filters/neurons
in each layer. The yellow boxes inside the convolutional layers show the kernel and the number beside it refers to the corresponding
kernel size. Only one kernel is shown per set of convolutional layers; all other layers in the set have kernels of the same size. Conv2D and
ReLU refer to Convolutional Layers and Rectified Linear Units, respectively.

Figure 6. Histograms of residuals for all galaxies in the testing set. We define the residuals as the difference between the true value and the
most probable value predicted by GaMPEN. The dashed vertical line represents x = 0, denoting cases with perfectly recovered parameter
values. The mean (µ), median (µ̃), and standard deviation (σ) of each residual distribution are listed in each panel.
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Figure 7. The calculated percentile coverage probabilities for different dropout rates. The top row shows the probabilities for each output
variable individually, while the bottom row shows the probabilities averaged over the three variables. The coverage probabilities are
defined as the percentage of the total test examples where the true value of the parameter lies within a particular confidence interval of the
predicted distribution. A dropout rate of 7× 10−4 leads to coverage probabilities very close to their corresponding confidence levels.

Figure 8. Examples of the transformation applied by the STN to six randomly selected simulated galaxy images. The top row shows the
input galaxy images, and the bottom row shows the corresponding output from the STN. The numbers in the top-left yellow boxes help
correspond the output images to the input images. As can be seen, the STN learns to apply an optimal amount of cropping for each input
galaxy.
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Figure 9. Examples of the transformation applied by a trained STN to real HSC-Wide g-band galaxies. The STN helps the downstream
CNN to focus on the galaxy of interest at the center of the cutout by cropping out most secondary galaxies present in the input frame.

Figure 10. Uncertainties predicted by GaMPEN for each parameter plotted against the true values. The σ for each parameter is defined as
the width of the 68.27% confidence interval. Note that we plot fractional uncertainties for radius and flux in order to make the y-axis
dimensionless for all three rows.
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B. Qualitative Transformation of GaMPEN Predictions
Given that we know GaMPEN residuals are higher for certain regions of the parameter space, we explore how using only
qualitative labels in those regions (instead of quantitative predictions) affects the overall residual values. The labeling is
informed by the results of §3. The labels are applied based on the predicted values of GaMPEN because we will not have
access to true values of the parameters when applying GaMPEN to previously unanalyzed real galaxies. This is crucial
given that when we apply GaMPEN to real data, techniques like this will provide us practical tools to deal with predictions
in regions of the parameter-space where we know GaMPEN to be less accurate.

Figure 11. The left panels show the residuals for bulge-to-total light ratio and radius plotted against their predicted values. The white
dashed regions show the parameter-space where we replace the quantitative predictions with qualitative flags. Each corresponding
histogram on the right shows the distribution of residuals before and after the transformation of output values.

For the bulge-to-total ratio, we retain GaMPEN’s numerical predictions for 0.1 < LB/LT < 0.85, but label the more
extreme galaxies as “highly bulge-dominated” (LB/LT ≥ 0.85) or “highly disk-dominated” (LB/LT ≤ 0.1).The top left
panel of Figure 11 shows the two labeled regions (white-shaded grid), which is where the residuals are highest. The right
panel of the top row shows the residual distributions including and excluding the extreme cases. As indicated by the standard
deviation (top right corner), removing these extreme cases eliminates the largest errors in the predicted values of LB/LT .
We also checked the accuracy of our assigned labels, and show the confusion matrix in Figure 12. From this, we calculate
the net accuracy of our extreme LB/LT labels to be ⪆ 99%.

We apply similar labels to small predicted values of the effective radius. As shown in the bottom row of Figure 11, we
flag galaxies with Re < 1.0 arcsec with the label “galaxy with Re < 1 arcsec” in place of the exact numerical value. This
reduces the typical error for Re, as shown in the histogram on the right. We calculate the accuracy of this label to be ∼ 97%.

Thus, replacing GaMPEN’s quantitative predictions in certain small regions of the parameter space with qualitative flags
results in a reduction of the typical residuals as well as highly accurate qualitative predictions.
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Figure 12. Confusion matrix between the labels we assign when GaMPEN predicts extreme bulge-to-total ratios, LB/LT < 0.1 or
> 0.85, and their true LB/LT values. The number in each block shows how many galaxies correspond to that panel, resulting in an
overall accuracy > 99%.

C. Preliminary Results of Application on Real Data
We take the GaMPEN model trained on simulations and further fine-tune it using a small amount of real data. We select
z < 0.25 HSC-W g-band galaxies with secure redshifts and no imaging issues (such as cosmic ray hits), and then cross-match
these with the Simard et al. (2011) catalog, which had performed bulge + disk decomposition using Sloan Digital Sky Survey
(SDSS) imaging. Since the depth reached by SDSS is much shallower than HSC-Wide, we also Galfit ∼ 2000 additional
galaxies to determine their structural properties. We use the Simard et al. (2011) values and our own fits to represent the
“true” parameter values. The residuals obtained by comparing these values to the most probable values of the GaMPEN
predictions is shown in Figures 13 and 14. As can be seen from both the figures, these preliminary results are extremely
promising and closely resemble the results obtained on the simulated galaxies (Figures 4 and 6).

Figure 13. Histograms of residuals for real HSC-W z < 0.75 galaxies. We define the residuals as the difference between the true value
and the most probable value predicted by GaMPEN. The dashed vertical line represents x = 0, denoting cases with perfectly recovered
parameter values. The mean (µ), median (µ̃), and standard deviation (σ) of each residual distribution are listed in each panel.
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Figure 14. Residuals of GaMPEN predicted parameter values plotted against the true values. The residual for each parameter is defined as
the difference between the most probable predicted value and the true value. The color of each hexagonal bin corresponds to the number
of galaxies it contains, as shown by the colorbar on the right.


