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Abstract

Supernova spectral time series can be used
to re-construct a spatially resolved model of
the explosion known as supernova tomogra-
phy. In addition to an observed spectral time
series, a supernova tomography requires a ra-
diative transfer model to perform the inverse
problem with uncertainty quantification for
a reconstruction. The smallest parametriza-
tions of supernova tomography models are
roughly a dozen parameters with a realis-
tic one requiring more than 100. Realis-
tic radiative transfer models require tens of
CPU minutes for a single evaluation mak-
ing the problem computationally intractable
with traditional means requiring millions of
MCMC samples for such a problem. A new
method for accelerating simulations known
as surrogate models or emulators using ma-
chine learning techniques offers to provides
a solution for such problems and a way to
understand progenitors/explosions from spec-
tral time series. There exist emulators for the
TARDIS supernova radiative transfer code
but they only perform well on simplistic low-
dimensional models (roughly a dozen param-
eters) with a small number of applications
for knowledge gain in the supernova field. In
this work, we present a new emulator for
the radiative transfer code TARDIS that not
only outperforms existing emulators but also
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provides uncertainties in its prediction. It
presents the foundation for a future active
learning based machinery that will be able
to emulate very high dimensional spaces of
hundreds of parameters crucial for unravel-
ing urgent questions in supernova and related
fields.

1. Introduction
Regular stars only allow for direct measurements of
the properties of their surface and views into the inte-
rior are not directly possible. The dynamical nature
of supernovae, however, encodes spatially resolved in-
formation about their interior in spectral time series
(known as supernova tomography). Supernova tomog-
raphy uses the recession of a surface of last scattering
(photosphere) deeper into the envelope to perform pa-
rameter inference on shells of ejecta with theoretical
radiative transfer simulations. Such data-driven phys-
ically motivated tomography models are directly com-
parable to explosion simulations and have the power
to unlock the progenitor and explosion mechanisms for
many different classes of exploding objects.

However, the parameter space for such models has at
a minimum ≈ 12 dimensions for very simple param-
eterizations of the problem and coupled with evalua-
tions times of tens of minutes per model with mod-
ern radiative transfer code results in a computation-
ally intractable model (see e.g. Kerzendorf et al., 2021).
Credible comparisons of supernova tomographies with
explosion scenarios do not only require solving the in-
verse problem but also demand uncertainty quantifica-
tion exacerbating the computational requirements.

Simulation based inference has addressed the uncer-
tainty quantification by using emulators (also known
as surrogate models) which are machine learning con-
structs provide approximations that are orders of mag-
nitude faster to complex simulations which then allows
their use in standard MCMC samplers (Cranmer et al.,
2020). Vogl, C. et al. (2020); Kerzendorf et al. (2021);
O’Brien et al. (2021) have developed emulators to ac-
celerate the TARDIS (Kerzendorf & Sim, 2014; Vogl
et al., 2019; Kerzendorf et al., 2022) radiative trans-
fer code for problems up to 14 parameters and applied
them to supernova tomography.

A full tomography and with it the understanding of
explosion and progenitor mechanisms requires roughly
an order of magnitude more parameters. Such large di-
mensionality is not feasible for the current generation
of emulators. High-dimensional emulators will require
an active learning component to ensure training sam-
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ples are only produced in parts of the parameter space
where they decrease the uncertainty of the emulator.

Numerous publications extend neural networks to
quantify the prediction by uncertainties. Recently
popular approaches of Bayesian methods include
Monte Carlo (MC) dropout (Gal & Ghahramani, 2016)
and weight uncertainty (Blundell et al., 2015). In addi-
tion, there are non-Bayesian approaches, for instance,
post-hoc calibration by temperature scaling of a val-
idation dataset (Guo et al., 2017), and deep ensem-
bles (Lakshminarayanan et al., 2017). Amongst the
classical methods, deep ensembles (Lakshminarayanan
et al., 2017) generally perform best in uncertainty esti-
mation (Ovadia et al., 2019). Methods such as weight
uncertainty, MC dropout, and deep ensembles require
multiple passes to obtain the uncertainty. For compu-
tational efficiency, deterministic methods in a single
forward pass (Van Amersfoort et al., 2020; Liu et al.,
2020) are presented.

Since our model is a relatively small network which
does not take a large amount of computation, we
choose the best uncertainty prediction, viz. deep en-
sembles. In our case, the prediction uncertainties are
not only driven by the sampling sparseness of the pa-
rameter space but also by the Monte Carlo nature of
the TARDIS radiative transfer code.

In Section 2, we describe the setup of our neural net-
work model. We show various statistics about our
model and comparison with TARDIS and its uncer-
tainty in Section 3. We conclude and give an outlook
over future work in Section 4.

2. Neural network model
The mapping from the parameters to the spectra is
approbated by a feedforward neural network. For un-
certainty estimation, we select proper scoring rules,
and then train the ensemble as proposed in (Lakshmi-
narayanan et al., 2017). An adversarial training (AT)
is an option that probably improves the uncertainty
measurement.

2.1. Single model for regression

We use the training set from (Kerzendorf et al., 2021)
and thus have the ‘parameters’ as the inputs x ∈ R12

and the ‘spectra’ as the outputs y ∈ R500 of the neu-
ral networks. The dataset is split into 90 000 training
data, 18 000 validation data and 18 000 test data. The
data is preprocessed by a logarithmic scale and then
normalised by removing the mean and scaling to unit
variance (Pedregosa et al., 2011).

The data sets are comfortably large. That may be the
reason that the neural networks are not very sensitive
to hyperparameter variations, as we discovered in a
very broad search on a compute cluster. The use of
dropout did not change much, nor was layer normal-
isation essential. The best architectures were those
with between 3 and 5 hidden layers of 200 to 400 soft-
plus hidden units, training with batch sizes between
100 and 500 samples. All networks are trained with
Adam.

van der Smagt & Hirzinger (1998); He et al. (2016) pro-
pose a residual architecture for deep layers to avoid
degradation problems. This residual architecture ag-
gregates the output from the previous layer and the
current layer as the input to the next layer. In our
network, we use concatenation for faster convergence
as opposed to addition (as suggested in He et al., 2016).

We obtain the uncertainty for each model by out-
putting the mean µ, and the standard deviation (STD)
σ, from the final hidden layer.

Scoring rules The quality of predictive uncertainty
can be measured by scoring rules. The maximised
likelihood log pθ(y|x) is a proper scoring rule (Laksh-
minarayanan et al., 2017; Gneiting & Raftery, 2007).
We use a maximum-a-posteriori (MAP) that is a neg-
ative log likelihood (NLL) with the weight regularisa-
tion log p(θ). A standard NLL uses no prior knowledge
about the expected distribution of the model weights
θ and in our case leads to overfit. If the weights are
standard distribution, log p(θ) is approximate to L2

norm of the weights. In our implementation, we set a
hyper-parameter β as the coefficient of the regularisa-
tion, and the loss is minimised as:

L(x) =− log pθ(y|x)− β log p(θ) (1)

∝ log σ2
θ(x)

2
+

(
y − µθ(x)

)2
2σ2

θ(x)
+ β∥θ∥2 + constant.

Adversarial training An adversarial training (AT
Szegedy et al., 2014; Goodfellow et al., 2015) is able to
smooth predictive distributions and is possible to im-
prove the uncertainty prediction (Lakshminarayanan
et al., 2017). Adversarial examples are similar to the
training samples, but are misclassified by NNs. The ex-
amples are generated by x′ = x+ ϵ sign(∇xL(θ,x,y)),
where the perturbation is bounded in ϵ.

We then rewrite the loss:

LAT (x) = αL(x) + (1− α)L(x′). (2)
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Table 1. Model architecture.
name hyper-parameters
input dimension 12
output dimension 500
number of hidden layers 5
activation of hidden layers Softplus
connection of hidden layers residual with concatenation
hidden units 400
Activation of µ final layer Linear
Activation of σ final layer Softplus
β 5e-4
α 0.9
ϵ 5e-4
batch size 500
learning rate 2e-4
parameters initialisation xavier normal

We select a good model by searching for the hyper-
parameters based on the lowest loss value of the vali-
dation dataset. Searching in small ranges around the
best hyper-parameters of (Kerzendorf et al., 2021), we
obtain Table 1 using Polyaxon 0.5.6 (https://polyaxon.
com) on a cluster with multiple NVIDIA Tesla V100
GPUs. The code is implemented in Pytorch 1.7.1
(Paszke et al., 2019).

2.2. Ensembles

To obtain multiple models from the best architecture,
we have different weight initialisation and the order of
the batch data selection, for each model. After train-
ing M models independently and in parallel, the pre-
diction is measured using a uniformly-weighted mix-
ture of Gaussian distributions

p(y|x) = M−1
M∑

m=1

pθm(y|x, θm). (3)

We approximate the ensemble prediction as a Gaussian
with a mean and variance equal to, respectively, the
mean and variance of the mixture

µ∗(x) =M−1
∑
m

µθm(x),

σ2
∗(x) =M−1

∑
m

(
σ2
θm(x) + µ2

θm(x)
)
− µ2

∗(x). (4)

3. Results
We evaluate the approach on the spectra simulation.
We take the empirical variance as the baseline, which
is commonly used in practice. Ensembles of NNs ap-
proximate the uncertainty from the empirical variance
of multiple predictions. Usually, it uses mean square
error (MSE) loss for the training. To simplify the
comparison, we use the same models as the deep en-
sembles. We also compare the deep ensembles with a

vanilla uncertainty estimation – measuring the uncer-
tainty by the STD of a single model. Since the vanilla
approach is the deep ensembles with M = 1, we do
not separately demonstrate the results. Additionally,
we evaluate how the optional term, the AT, affects the
ensembles.

We use the mean and max of fractional error metrics
as in (Vogl, C. et al., 2020; Kerzendorf et al., 2021) to
quantify the results:

MeanFE =
1

N

N∑
i=0

|yemu
i − ytest

i |
ytest
i

,

MaxFE =
N

max
i=0

|yemu
i − ytest

i |
ytest
i

,

where N is the dimension of spectra, and yi represents
the flux at the i-th dimension.

3.1. Spectra prediction

Figure 1 shows the accuracy of the prediction. In
general, the ensembles with ATs outperforms the ap-
proaches without ATs. With the number of models in
the ensemble more than six, the accuracy is not signif-
icantly improved.

Based on the above evaluation, the AT hardly im-
proves the uncertainty prediction, but it improves the
accuracy, especially when the number of models is
small. The deep ensembles outperform the empirical
and vanilla approaches since the latter is easily over-
confident. Taking into the accuracy, computation ef-
ficiency, and the uncertainty prediction into consid-
eration, the best number of the models for the deep
ensembles is suggested to be six. Figure 2 illustrates
two examples of the prediction of the testing dataset
using deep ensembles with six models and thus in the
following we will use six models for the ensemble in
our further tests.

https://polyaxon.com
https://polyaxon.com
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Figure 1. Accuracy. The horizontal-axis shows the number of NN in the ensembles. The mean and the STD of 18 000
testing samples are computed.

0.5

1.0

1.5

2.0

2.5

F
lu

x
de

ns
it

y
[e

rg
s−

1
Å
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−0.1
0.0
0.1

fr
ac

.
re

si
d.

[1
]

0.5

1.0

1.5

2.0

2.5

3.0

F
lu

x
de

ns
it

y
[e

rg
s−

1
Å
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Figure 2. Examples of the uncertainty prediction. Highest and the lowest MaxFE from the test set predictions. The
shaded areas denote 99.9 % confidence interval. In the lower figures, the black lines and dashed grey lines represent the
residual and zero values, respectively.

3.2. Uncertainty prediction

The Dalek emulator has to contend with two types
of uncertainties: 1) the prediction uncertainty stem-
ming from a sparseness of sampling 2) the intrinsic
uncertainty of the TARDIS simulator arising from the
Monte Carlo radiative transfer. We have estimated
the uncertainty given by TARDIS for the test-set spec-
trum with the highest maxσ/µ-ratio (highest relative
uncertainty; id=12625) and reran TARDIS (version
hash ad91bef1a) with 100 different seeds to estimate
the uncertainty arising from the Monte Carlo method.
In Figure 3, we show that the network predicts a larger
uncertainty that likely includes additional prediction
uncertainty and mostly completely envelops the uncer-
tainty given by TARDIS. Further tests are needed with
a larger number of samples to explore the consistency

of this result.

4. Conclusions
We present a probabilistic neural network model for
the TARDIS supernova radiative transfer code. The
emulator model is based on the deep ensemble ap-
proach given by (Lakshminarayanan et al., 2017) and
even for a single model provides a MeanFE of ≈ 10−5

which is better than the model in the original Dalek
emulator (MeanFe ≈ 10−3; Kerzendorf et al., 2021).
In Figure 1, we show that for this architecture there
is no substantial increase in accuracy with more than
six models. We show that the test set TARDIS spec-
trum lies well within the predicted uncertainties (see
Figure 3). We also show that (for now for a limited set)
the uncertainty predicted by the neural network also
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Figure 3. Comparison between the Monte Carlo uncer-
tainty arising from TARDIS and the uncertainty estimated
by the deep ensemble for test set sample 12625. We show
3− σ for visualization purposes.

captures the Monte Carlo uncertainty by TARDIS well.
The preliminary work that is shown is very promising
but still demands several more tests. As discussed in
the introduction, the described work is part of a larger
effort to build an active learning emulator for TARDIS
with the express goal of doing supernova tomography
and will be explored in future work.
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