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Abstract
Modeling strong gravitational lenses in order to
quantify the distortions in the images of back-
ground sources and to reconstruct the mass den-
sity in the foreground lenses has traditionally been
a difficult computational challenge. As the qual-
ity of gravitational lens images increases, the
task of fully exploiting the information they con-
tain becomes computationally and algorithmically
more difficult. In this work, we use a neural net-
work based on the Recurrent Inference Machine
(RIM) to simultaneously reconstruct an undis-
torted image of the background source and the
lens mass density distribution as pixelated maps.
The method we present iteratively reconstructs
the model parameters (the source and density map
pixels) by learning the process of optimization of
their likelihood given the data using the physi-
cal model (a ray-tracing simulation), regularized
by a prior implicitly learned by the neural net-
work through its training data. When compared to
more traditional parametric models, the proposed
method is significantly more expressive and can
reconstruct complex mass distributions, which we
demonstrate by using realistic lensing galaxies
taken from the cosmological hydrodynamic simu-
lation IllustrisTNG.

1. Introduction
Strong gravitational lensing is a natural phenomenon
through which multiple distorted images of luminous back-
ground objects, i.e. early-type star-forming galaxies, are
formed by massive foreground objects along the line of sight
(e.g., Vieira et al., 2013; Marrone et al., 2018; Rizzo et al.,
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2020; Sun et al., 2021). These distortions are tracers of the
distribution of mass in foreground objects, independent of
the electromagnetic behaviour of these overdensities. As
such, this phenomenon offers a powerful probe of the distri-
bution of dark matter and its properties outside of the Milky
Way (e.g., Dalal & Kochanek, 2002; Treu & Koopmans,
2004; Hezaveh et al., 2016; Gilman et al., 2020; 2021).

Lens modeling is the process of inferring the parameters
describing both the mass distribution in the foreground lens
and the light emitted by the background source. This has tra-
ditionally been a time- and resource-consuming procedure.
A common practice to model the mass of lensing galaxies is
to assume that the density profiles follow simple parametric
forms, e.g., a power law ρ ∝ r−γ′

. These profiles generally
provide a good fit to low-resolution data and are easy to
work with due to their small number of parameters (e.g.,
Koopmans et al., 2006; Barnabè et al., 2009; Auger et al.,
2010). However, as high-resolution and high signal-to-noise
ratio (SNR) images become available, lens analysis with
simple models requires introducing additional parameters
representing the complexities in the lensing galaxies and
their immediate environments (e.g., Sluse et al., 2017; Wong
et al., 2017; Birrer et al., 2019; Rusu et al., 2020; 2017; Li
et al., 2021). This approach becomes intractable as the
quality of images increases. For example, no simple para-
metric model of the Hubble Space Telescope (HST) Wide
Field Camera 3 (WFC3) images of the Cosmic Horseshoe
(J1148+1930) — initially discovered by Belokurov et al.
(2007) — has been able to model the fine features of the
extended arc (e.g., Bellagamba et al., 2016; Cheng et al.,
2019; Schuldt et al., 2019).

In this work, we develop a method for pixelated strong
gravitational lensing mass and source reconstruction, allow-
ing it to reconstruct complex distributions. Our method is
based on the Recurrent Inference Machine (RIM, Putzky &
Welling, 2017), which proposes to learn an iterative infer-
ence algorithm, moving away from hand-chosen inference
algorithms and hand-crafted priors. In this framework, the
prior is implicit in the dataset used to train the neural net-
work. We also present a new architecture based on the
original RIM to allow the inference of pixelated maps for
this highly non-linear and under-constrained problem.
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2. Methods
2.1. Data

The background source brightness distributions are taken
from the Hubble Space Telescope (HST) COSMOS field
(Koekemoer et al., 2007; Scoville et al., 2007), acquired in
the F814W filter. A dataset of mag limited (F814W < 23.5)
deblended galaxy postage stamps (Leauthaud et al., 2007)
was compiled as part of the GREAT3 challenge (Mandel-
baum et al., 2014). The data is publicly available (Mandel-
baum et al., 2012), and the preprocessing is done through
the open-source software GALSIM (Rowe et al., 2015). The
final set has 13 321 galaxy images cropped to 1282 pixels
and with a flux greater than 50 photons cm−2 s−1. We
split this set into a training set (90%) and a test set (10%) be-
fore data augmentation and denoising with an autoencoder
(Vincent et al., 2008).

The projected surface density maps (convergence) of lens-
ing galaxies were made using the redshift z = 0 snapshot
of the IllustrisTNG-100 simulation (Nelson et al., 2019)
in order to produce physically realistic realizations of dark
matter and baryonic matter halos. We selected 1604 profiles,
split into a training set (90%) and a test set (10%), with the
criteria that they have a total dark matter mass of at least
9× 1011M�. We then collected all dark matter, gas, stars,
and black hole particles from the profiles. We then compute
smoothed projected surface density maps with an adaptive
Gaussian kernel following the prescriptions from Aubert
et al. (2007) and Rau et al. (2013). The final training set
is composed of 3 different projections (xy, xz and yz) of
each profiles, rendered on a pixelated grid with a resolution
of 0.55 kpc/h and 1282 pixels. Several data augmentation
rounds, including rescaling each convergence maps ran-
domly to produce a set with an Einstein radius uniformly
distributed θE ∼ U(0.5′′, 2.5′′), were used to increase the
number of profiles to 50 000 for training a VAE and the
RIM.

2.2. Data Augmentation with VAEs

When working with limited data, data augmentation is cru-
cial to ensure that the trained model is robust against pertur-
bations — like rotations of images — which are not implic-
itly included as symmetries in the architecture of the model.
We trained a variational auto-encoder (VAE, Kingma &
Welling, 2013) for data augmentation of the source maps
and another VAE for the convergence maps.

Direct optimization of the ELBO loss for VAEs can prove
difficult because the reconstruction term could be relatively
weak compared to the Kullback Leibler (KL) divergence
term (Kingma & Welling, 2019). To alleviate this issue,
we follow the work of Bowman et al. (2015) and Kaae
Sønderby et al. (2016) in setting a warm-up schedule for
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Figure 1. Example of a simulated lensed image in the test set that
exhibits a large deflection in its eastern arc which indicates the
presence of a massive object — in this case a dark matter subhalo.
The fine-tuning procedure is able to recover this subhalo because
of its strong signal in the lensed image and reduces the residuals
to noise level.

the KL term in the ELBO loss, starting from β = 0.1 up
to βmax. Following the work of Lanusse et al. (2021), we
also introduce an `2 penalty between the input and output
of the bottleneck fully-connected layers to encourage an
identity map between them. This regularisation term is
slowly removed during training.

2.3. Raytracing

Simulations of lensed images are produced using a ray-
tracing code, which maps the brightness distribution of back-
ground sources to the observed coordinates. The foreground
pixel coordinates θi and the source pixel coordinates βi are
related by the lens equation

βi = θi −α(θi), (1)

where α is the deflection angle. The deflection angle is
calculated from the projected surface density field κ (also
commonly refered to as the convergence) by the integral

α(θi) =
1

π

∫
R2

κ(θ′)
θi − θ′

‖θi − θ′‖2 d
2θ′ (2)

The intensity of a pixel in a simulated lensed image is ob-
tained by bilinear interpolation of the source brightness dis-
tribution at the coordinate βi. The integral in equation (2) is
computed in near-linear time using Fast Fourier Transforms
(FFT).

A blurring operator — i.e., a convolution by a point spread
function — is then applied to the lensed image to replicate
the response of an imaging system. This operator is imple-
mented as a GPU-accelerated matrix operation since the
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Figure 2. Rolled computational graph of the RIM.

blurring kernels used in this paper have a significant pro-
portion of their energy distribution encircled inside a small
pixel radius.

2.4. Recurrent Inference Machine

The RIM (Putzky & Welling, 2017) is a form of learned
gradient-based inference intended to solve inverse problems
of the form

y = f(x) +N , (3)

where y is a vector of noisy lensed images, f is a function
encoding the physical model, x is a vector of parameters of
interest, andN is a vector of additive noise. This framework
has been applied in the context of linear inverse problems,
where the function f can be represented in a matrix form,
in particular in the cases of under-constrained problems
for which the prior on the parameters x, p(x), is either
intractable or hard to compute (Morningstar et al., 2018;
2019; Lønning et al., 2019). The use of the RIM to solve
non-linear inverse problems was first investigated in (Modi
et al., 2021). In our case, the inverse problem mapping
function F is non-linear w.r.t. the convergence parameters
which is a consequence of the non-linearity of equation (1).

The governing equation for the RIM is a recurrent relation
that takes the general form

x̂(t+1) = x̂(t) + gϕ
(
x̂(t), y, ∇x̂(t) log p(y | x(t))

)
, (4)

where p(y | x) is an isotropic gaussian likelihood func-
tion, characterized by the noise standard deviation σ. By
minimizing the weighted mean squared loss

Lϕ(x,y) =
1

T

T∑
t=1

M∑
i=1

wi(x̂
(t)
i − xi)

2 , (5)

the RIM learns to optimize the parameters x given a likeli-
hood function. Unlike previous work (Andrychowicz et al.,
2016; Putzky & Welling, 2017; Morningstar et al., 2018;
2019; Lønning et al., 2019), the data vector y — or ob-
servation — is fed to the neural network in order to learn
the initialization of the parameters, x̂(0) = gϕ(0,y, 0), as
well as their optimization. We found in practice that this
significantly improves the performance of the model for our
problem and it avoids situations where the model would get
stuck in local minima at test time due to poor initialization.

The RIM used in this work is designed based on a U-net
architecture (Ronneberger et al., 2015). The most important
aspect of our implementation is the use of Gated Recur-
rent Units (Cho et al., 2014) placed in each skip connection
which guides the reconstruction independently at different
levels of resolution. The gradient of the likelihood is com-
puted using automatic differentiation. Following Modi et al.
(2021), we preprocess the gradients using the Adam algo-
rithm (Kingma & Welling, 2013).

2.5. Fine-tuning

Once the RIM is trained, we can treat the RIM optimization
procedure as a baseline estimator of the parameters x given
a noisy observation y. We now concern ourselves with a
strategy to improve this estimator. This is important for
observations with high SNR, for which the estimator must
be extremely accurate to model all the fine features present
in the arcs. The fine-tuning objective is to minimize directly
the likelihood over each time steps of the RIM:

ϕ̂MAP = argmax
ϕ

1

T

T∑
t=1

log p(y | x̂(t)) + log p(ϕ) . (6)

This objective function makes no use of labels, meaning that
only an observation y is required to fine-tune the RIM. This
allows us to use this objective at test time, at which point
the RIM is trained to reconstruct this specific observation.

We use elastic weight consolidation (EWC, Kirkpatrick
et al., 2016) as prior over the model parameters. To compute
the Fisher matrix in EWC, it is necessary to sample from a
distribution of lensing systems that are conditioned on the
observation. This is accomplished by sampling the latent
space of both the source VAE and the convergence VAE
near the latent code of the baseline prediction of the RIM.
More details regarding this procedure are given in appendix
E.

3. Results and Discussion
Figure 3 presents a few examples of the reconstructions
obtained using the approach presented above. An emphasis
is put on complex convergence profiles with multiple main
deflectors or substructures. Modeling such convergence
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Figure 3. Samples of the fine-tuned RIM (RIM+FT) reconstructions from the test set. We report the residuals of the reconstruction, as
well as the difference between the χ2 and the number of degrees of freedom ν = 16384.

maps with traditional maximum-likelihood methods using
analytical profiles would require significant user input and
considerable computational resources due to large param-
eter degeneracies. The mock observations as well as the
reconstructed lensed images are also shown, alongside the
residuals of the reconstructions and the χ2 statistic. The
first 3 reconstructions have statistically significant residuals,
with no pixels exceeding the 5σ threshold. The last recon-
struction, which is arguably the most complex to perform,
has a few pixels reaching 5σ.

In addition to a visual inspection of the reconstructed
sources and convergences, we compute the coherence spec-
trum to quantitatively assess the quality the reconstructions

γ(k) =
P12(k)√

P11(k)P22(k)
, (7)

where Pij(k) is the cross power spectrum of images i and j
at the wavenumber k. Figure 4 shows the mean value and
the 68% inclusion interval of those spectra for the conver-
gence and source maps in a test set of 3000 examples. The
fine-tuning procedure, shown in red, is able to improve sig-
nificantly the coherence of the baseline background source,
shown in black, at all scales. The coherence spectrum of
the convergence remains unchanged by the fine-tuning pro-
cedure. Still, we note that many examples in the dataset
showcase significant improvement which we illustrate in
Figure 1.

Figure 4. Statistics of the coherence spectrum from a test set. The
solid line is the average coherence. The transparent region is the
68% confidence interval.

The results obtained here demonstrate the effectiveness of
machine learning methods for inferring pixelated maps of
the distribution of mass in lensing galaxies. Since this is
a heavily under-constrained problem, stringent priors are
needed to avoid overfitting the data, a task that has tradition-
ally been difficult to accomplish (e.g., Saha & Williams,
1997). The model proposed here can implicitly learn these
priors from a set of training data.

The flexible and expressive form of the reconstructions
means that, in principle, any lensing system (e.g., a single
simple galaxy, or a group of complex galaxies) could be an-
alyzed by this model, without any need for pre-determining
the model parameterization. This is of high value given the
diversity of observed lensing systems, and their relevance
for constraining astrophysical and cosmological parameters.
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Software and data
The source code, as well as the various scripts and pa-
rameters used to produce the model and results is avail-
able as open-source software under the package Censai1.
The model parameters, as well as the convergence maps
and the background sources used to train these mod-
els, the test set examples and the reconstructions re-
sults are available as open-source datasets hosted by Zen-
odo2. This research made use of Tensorflow (Abadi
et al., 2015), Tensorflow-Probability (Dillon et al.,
2017), Numpy (Harris et al., 2020), Scipy (Virtanen et al.,
2020), Matplotlib (Hunter, 2007), scikit-image
(Van der Walt et al., 2014), IPython (Pérez & Granger,
2007), Pandas (Wes McKinney, 2010; pandas develop-
ment team, 2020), Scikit-learn (Pedregosa et al.,
2011), Astropy (Astropy Collaboration et al., 2013; 2018)
and GalSim (Rowe et al., 2015).
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Günther, H. M., Lim, P. L., Crawford, S. M., Conseil, S.,
Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A.,
Vand erPlas, J. T., Bradley, L. D., Pérez-Suárez, D., de
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Sun, F., Egami, E., Pérez-González, P. G., Smail, I., Caputi,
K. I., Bauer, F. E., Rawle, T. D., Fujimoto, S., Kohno,
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Figure 5. A single time step of the unrolled computation graph of the RIM. GRU units are placed in the skip connections to guide the
reconstruction of the source and convergence. A diagram of the steps to compute the likelihood gradients is shown in the bottom right of
the figure, including the Adam processing step. We used the shorthand notation ∇y|x ≡∇x log p(y | x), s to mean the source map and
logκ to mean the log10 of the convergence map.

A. Training dataset
400 000 observations are simulated from random pairs of COSMOS sources and IllustrisTNG convergence training splits
in order to train the RIM. An additional 200 000 observations are created from pairs of COSMOS source and pixelated
singular isothermal elliptical (SIE) convergence maps. 1 600 000 simulated observations are also generated from the VAE
background sources and convergence maps as part of the training set. Validation checks are applied to each examples in
order to avoid configurations like a single image of the background source or an Einstein ring cropped by the field of view.

Table 1. SIE parameters.
Parameter Distribution

Radial shift (”) U(0, 0.1)
Azimutal shift U(0, 2π)

Orientation U(0, π)
θE (”) U(0.5, 2.5)

Ellipticity U(0, 0.6)

B. Data augmentation with VAE

(a) Examples of COSMOS galaxy images (top row) and VAE
generated samples (bottom row).

(b) Examples of smoothed Illustris TNG100 convergence map
(top row) and VAE generated samples (bottom row).

Figure 6. Labels for the training set.
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C. VAE Architecture and optimisation
For the following architectures, we employ the notion of level to mean layers in the encoder and the decoder with the
same spatial resolution. In each level, we place a block of convolutional layers before downsampling (encoder) or after
upsampling (decoder). These operations are done with strided convolutions like in the U-net architecture of the RIM.

Table 2. Hyperparameters for the background source VAE.
Parameter Value

Input preprocessing 1

Architecture
Levels (encoder and decoder) 3
Convolutional layer per level 2

Latent space dimension 32
Hidden Activations Leaky ReLU
Output Activation Sigmoid

Filters 16, 32, 64
Number of parameters 3 567 361

Optimization
Optimizer Adam

Initial learning rate 10−4

Learning rate schedule Exponential Decay
Decay rate 0.5

Decay steps 30 000
Number of steps 500 000

βmax 0.1
Batch size 20

Table 3. Hyperparameters for the convergence VAE.
Parameter Value

Input preprocessing log10

Architecture
Levels (encoder and decoder) 4
Convolutional layer per level 1

Latent space dimension 16
Hidden Activations Leaky ReLU
Output Activation 1

Filters 16, 32, 64, 128
Number of parameters 1 980 033

Optimization
Optimizer Adam

Initial learning rate 10−4

Learning rate schedule Exponential Decay
Decay rate 0.7

Decay steps 20 000
Number of steps 155 000

βmax 0.2
Batch size 32

D. RIM architecture and optimisation
The notion of link function Ψ : Ξ→ X , introduced by Putzky & Welling (2017), is an invertible transformation between the
network prediction space ξ ∈ Ξ and the forward modelling space x ∈ X . This is a different notion from preprocessing,
discussed in section 2.1, because this transformation is applied inside the recurrent relation 4 as opposed to before training. In
the case where the forward model has some restricted support or it is found that some transformation helps the training, then
the link function chosen must be implemented as part of the network architecture as shown in the unrolled computational
graph in Figure 7. Also, the loss Lϕ must be computed in the Ξ space in order to avoid gradient vanishing problems
when Ψ is a non-linear mapping, which happens if the non-linear link function is applied in an operation recorded for
backpropagation through time (BPTT).

For the convergence, we use an exponential link function with base 10: κ̂ = Ψ(ξ) = 10ξ. This Ψ encodes the non-negativity
of the convergence. Furthermore, it is a power transformation that leaves the linked pixel values ξi normally distributed,
thus improving the learning through the non-linearities in the neural network. The pixel weights wi in the loss function
(5) are chosen to encode the fact that the pixel with critical mass density (κi > 1) have a stronger effect on the lensing
configuration than other pixels. We find in practice that the weights

wi =

√
κi∑
i κi

, (8)

encode this knowledge in the loss function and improved both the empirical risk and the goodness of fit of the baseline
model on early test runs.

For the source, we found that we do not need a link function — its performance is generally better compared to other link
function we tried like sigmoid and power transforms — and we found that the pixel weights can be taken to be uniform, i.e.
wi = 1

M .
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In the first optimisation stage, we trained 24 different architectures from a small set of valid hyperparameters previously
identified for approximately 4 days (wall time using a single Nvidia A100 gpu). Following this first stage, 4 architectures
were deemed efficient enough to be trained for an additional 6 days.

y gϕ

Learned initialization

ξ̂
(1)

Lϕ

gϕ

Ψ

logp(y | x̂(1)
)

∇
y|ξ̂(1)

y
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y

ξ̂
(T )+
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Figure 7. Unrolled computational graph of the RIM. Operations along solid arrows are being recorded for BPTT, while operations along
dashed arrows are not. The blue arrows are only used for optimisation during training. During fine-tuning or testing, the loss is computed
only as an oracle metric to validate that our methods can recover the ground truth.

Table 4. Hyperparameters for the RIM.
Parameter Value

Source link function 1
κ link function 10ξ

Architecture Figure 5
Recurrent steps (T ) 8

Number of parameters 348 546 818

First Stage Optimisation
Optimizer Adamax

Initial learning rate 10−4

Learning rate schedule Exponential Decay
Decay rate 0.95

Decay steps 100 000
Number of steps 610 000

Batch size 1

Second Stage Optimisation
Optimizer Adamax

Initial learning rate 6× 10−5

Learning rate schedule Exponential Decay
Decay rate 0.9

Decay steps 100 000
Number of steps 870 000

Batch size 1
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E. Fine-Tuning
We follow the work of Kirkpatrick et al. (2016) to define a prior distribution over ϕ that address the issue of catastrophic
forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990):

log p(ϕ) ∝ −λ
2

∑
j

diag(I(ϕ?D))j(ϕj − [ϕ?D]j)
2, (9)

where diag(I(ϕ?D)) is the diagonal of the Fisher information matrix encoding the amount of information that some set of
gravitational lensing systems from the training set similar to the observed test task carries about the baseline RIM weights
ϕ?D — the parameters that minimize the empirical risk over the training dataset D. The Lagrange multiplier λ is tuning our
estimated uncertainty about the neural network weights for the particular task at hand.

We can understand the need for a conditional sampling distribution by looking at the posterior of the RIM parameters.
Suppose we are given a training set D and a test task T which are conditionally independent given ϕ and have uniform
priors, then the posterior of the RIM parameters ϕ can be rewritten using the Bayes rule as

p(ϕ | D, T ) =
p(T | ϕ)p(ϕ | D)

p(T | D)
. (10)

The sampling distribution in this expression appears as the conditional p(T | D), which can also be viewed as the set of
examples from the training set similar to the test task by rewriting it as p(T | D) ∝ p(D | T ). The EWC term is then
derived by a Laplace approximation of the prior p(ϕ | D) around ϕ?D, which we also take to be proportional to the training
loss, the likelihood of each time steps and an `2 loss

log p
(
ϕ | (x,y) = D

)
∝ −Lϕ(x,y) +

1

T

T∑
t=1

log p(y | x̂(t))− `2
2
‖ϕ‖22 . (11)

Each reconstruction is performed by fine-tuning the baseline model on a test task composed of an observation vector, a
PSF and a noise amplitude. In practice, fine-tuning the test set of 3 000 examples can be accomplished in parallel so as to
be done in at most a few days by spreading the computation on ∼ 10 Nvidia A100 GPUs (or 10 hours on ∼ 100 GPUs).
Each reconstruction uses at most 2000 steps, which turns out to be approximately 20 minutes (wall-time) per reconstruction.
Early stopping is applied when the χ2 reaches noise level (χ2 = ν).

Figure 8. Examples similar to the test task shown in Figure 3. They
are sampled from the latent space of the source VAE and convergence
VAE near the RIM baseline latent code ẑ(T ) and used to estimate
diag(I(ϕ?

D)).

Table 5. Hyperparameters for fine-tuning the RIM.
Parameter Value
Optimizer RMSProp

Learning rate 10−6

Maximum number of steps 2 000
λ 2× 105

`2 0
Number of samples from VAE 200

Latent space distribution N (ẑ(T ), σ = 0.3)
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COSMOS RIM+FT IllustrisTNG RIM+FT Lensed Image RIM+FT COSMOS RIM+FT IllustrisTNG RIM+FT Lensed Image RIM+FT

Figure 9. 30 reconstructions taken at random from the test set of 3000 examples simulated from COSMOS and IllustrisTNG data at high
SNR. The colorscale are the same as in Figure 3.


