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Abstract

A new generation of sky surveys is poised to
provide unprecedented volumes of data contain-
ing hundreds of thousands of new strong lens-
ing systems in the coming years. Convolutional
neural networks are currently the only state-of-
the-art method that can handle the onslaught
of data to discover and infer the parameters of
individual systems. However, many important
measurements that involve strong lensing require
population-level inference of these systems. In
this work, we propose a hierarchical inference
framework that uses the inference of individual
lensing systems in combination with the selection
function to estimate population-level parameters.
In particular, we show that it is possible to model
the selection function of a CNN-based lens finder
with a neural network classifier, enabling fast in-
ference of population-level parameters without
the need for expensive Monte Carlo simulations.

1. Introduction
Strong gravitational lensing is a phenomenon where light
rays of a distant background source are deflected by the
gravity of foreground matter, resulting in the production of
multiple images. These lensing systems can be used for
important applications in cosmology, such as constraining
the mass of dark matter present in foreground galaxies (e.g.,
Vegetti et al., 2012; Hezaveh et al., 2016), providing precise
measurements of the expansion rate of the universe (e.g.,
Wong et al., 2020) and learning more about the morphology
of distant high redshift galaxies (e.g., Coe et al., 2013).
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In the next few years, a new generation of wide-area sky
surveys from the Rubin Observatory’s Legacy Survey of
Space and Time (LSST) and the Euclid Space Telescope
(EST) will provide an unprecedented volume of data con-
taining hundreds of thousands of new strong lensing systems
(Collett, 2015).

Recent works have focused on developing new and efficient
computational methods to analyze these large sets of data. In
particular, machine learning has been proposed to efficiently
perform various strong lensing analysis tasks. Convolutional
neural networks (CNN) have been trained in classification
tasks to detect strong lenses from survey data (Schaefer et al.,
2018; Lanusse et al., 2018). They have been used to discover
new strong lensing systems from the Kilo Degree Survey
(Li et al., 2020, KiDS) and the Ultraviolet Near Infrared
Optical Northern Survey (Savary et al., 2021), and have
generally surpassed traditional methods in terms of speed
and accuracy according to benchmark tests (Metcalf et al.,
2019). These networks have also been used to perform fast
and automated inference of the lensing parameters from the
observations of individual strong lensing systems (Hezaveh
et al., 2017; Perreault Levasseur et al., 2017; Wagner-Carena
et al., 2021; Park et al., 2021; Legin et al., 2021), speeding
up the analysis by more than ∼ 10 million times compared
to traditional methods.

However, many important science applications involving
strong gravitational lenses rely on population-level statistics
of lensing systems (e.g., Sonnenfeld & Cautun, 2021; Son-
nenfeld, 2021; 2022b;a). Generally, the task of population-
level inference is best framed within a hierarchical frame-
work, where the problem is broken down in multiple stages.
In a hierarchical framework, a clear separation between
the different components of the analysis is provided, (e.g.,
between the theoretical models underlying the population
distribution and the parameters describing the individual ob-
servations themselves). Generally, the problem includes the
inference of global hyperparameters λ describing the popu-
lation distribution of model parameters θ i.e the parameters
describing individual strong lenses. It is important, however,
for these hierarchical models to take into account the selec-
tion mechanisms of the observed data sets to avoid biased
inference results (Sonnenfeld & Cautun, 2021; Sonnenfeld,
2022a). The selection function would depend on the model
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parameters of individual strong lensing observations. Tra-
ditionally, this makes population-level inference difficult
in standard settings, where complex selections are difficult
to quantify and the corrections require a large number of
simulations at every step of the posterior sampling process.

In this work, we model the selection function of a CNN-
based strong lensing detector using neural networks. We
propose an efficient and flexible likelihood-free inference
framework for performing accurate large scale population-
level inference of strong lensing parameters that can readily
incorporate learned selection effects. In addition, our frame-
work circumvents issues regarding the interpretability of
typical black-box inference machines by allowing clear sep-
aration between the different components of our hierarchical
population model. In section 2, we describe our Bayesian
hierarchical inference framework for inferring the posterior
distribution of hyperparameters λ describing the population
of strong gravitational lensing model parameters θ. We also
detail our strong lensing simulations and the modeling of the
CNN-based selection bias using neural networks. In section
3, we test our hierarchical method to infer the population
of strong lensing model parameters based on a set of 1000
simulated strong lensing observations.

2. Methods
Given a set of observations {xi}, the task is to infer the pos-
terior distribution of population hyperparameters p(λ|{xi}).
Using Bayes’ theorem, this can be expressed as

p(λ|{xi}) =
p(λ)

∏
i p(xi|λ)∫

dλ′p(λ′)
∏

i p(xi|λ′)

=

[∫
dλ′ p(λ

′)

p(λ)

∏
i

p(xi|λ′)

p(xi|λ)

]−1

, (1)

In a typical hierarchical model, the individual observations
xi may explicitly depend on intermediate model parameters
θ and only implicitly on λ. In this case, the likelihood
p(xi|λ) can be expanded as

p(xi|λ) =
∫

p(xi|θ)p(θ|λ)dθ, (2)

where λ is ignored in p(xi|θ) as it only implicitly affects
the observation xi.

In practice, it may be more likely to observe certain events
xi. This may lead to the chosen set of events {xi} to instead
represent a biased selection of all possible observations,
which would consequently result in a biased inference of
the posterior distribution of the population hyperparameters

p(λ|{xi}). In the presence of selection effects (Mandel
et al., 2019; Moore & Gerosa, 2021), the proper expression
for the likelihood p(xi|λ) is

p(xi|λ) =
∫
p(xi|θ)p(θ|λ)dθ

α(λ)
, (3)

where α(λ) is evaluated by integrating over the product of
the probability of detection pdet(θ) of an event with model
parameters θ and the population model p(θ|λ),

α(λ) =

∫
pdet(θ)p(θ|λ)dθ. (4)

As such, accounting for selection bias incorporates an over-
all normalization factor α(λ) within the likelihood p(x|λ)
that can be interpreted as the fraction of samples from the
population model p(θ|λ) that would be observed given the
selection function pdet(θ) (Mandel et al., 2019). Note that
Equation 3 can be rewritten as

p(xi|λ) = Ep(θ|xi)

[
p(θ|λ)
p(θ)

]
p(xi)

α(λ)
, (5)

by applying Bayes’ theorem on the likelihood of the indi-
vidual lensing observations p(xi|θ) to obtain an expectation
value over the lensing model parameter posterior p(θ|xi).

Plugging this new expression back into Equation 1, we
obtain

p(λ|{xi}) =

∫ dλ′ p(λ
′)

p(λ)

∏
i

Ep(θ|xi)

[
p(θ|λ′)

p(θ)α(λ′)

]
Ep(θ|xi)

[
p(θ|λ)

p(θ)α(λ)

]
−1

, (6)

where the marginal probabilities p(xi) from applying Bayes’
theorem on both p(xi|λ) and p(xi|λ′) cancel out. As the
expectation values cannot be evaluated analytically, we can
instead approximate them as a mean over samples from the
lensing posterior p(θ|xi). Similarly, we can estimate α(λ)
by rewriting Equation 4 as the expectation value of pdet(θ)
over p(θ|λ) and approximate it with samples from p(θ|λ).

The difficulty in estimating α(λ), however, is that the se-
lection function pdet(θ), which captures the effects of the
selection bias, is typically complex and not explicitly known
(e.g., Sonnenfeld, 2022a). This is especially true if the se-
lection method is based on CNN detections of strong lenses,
as the entire detection algorithm is framed as a black-box.

In this work, we circumvent this issue by modeling the se-
lection function pdet(θ) of CNN-based detectors of strong
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lenses. In particular, we train a neural network to classify be-
tween detected and non-detected samples of strong lensing
model parameters θ. The output probability of this classifi-
cation network results in the probability of detection pdet(θ)
of a lensing system with parameters θ.

Furthermore, we train a convolutional Bayesian Neural Net-
work (BNN) to predict the posterior distribution of strong
lensing model parameters p(θ|x) and to rapidly sample from
it in order to approximate the expectation values from Equa-
tion 6. Given that upcoming sky surveys are estimated to
discover hundreds of thousands of new strong lenses, tradi-
tional methods such as likelihood-based inference, which
require time-consuming analyses from strong lensing ex-
perts, will be intractable for this task. Instead, BNNs have
been shown to be orders of magnitude faster than traditional
methods and can provide well-calibrated uncertainties on
strong lensing parameter predictions (Perreault Levasseur
et al., 2017; Wagner-Carena et al., 2021; Park et al., 2021).

2.1. Simulations

We simulate two sets of strong lensing observations: low-
resolution images similar to what is expected to be observed
by wide-area surveys such as LSST and the corresponding
high-resolution follow-up observations. As a whole, our
simulations can be described by a 13-dimensional model
parameter vector θ. Examples of the lensing simulations are
shown in appendix A.

At test time, the CNN detector is applied to the set of mock
LSST lensing observations. Then, for the images that are
classified as a detection, we apply our BNN model to their
follow-up observations in order to infer the posterior dis-
tribution of strong lensing model parameters p(θ|x) with
higher precision. Given the inferred posterior p(θ|x), we
can evaluate Equation 6 by approximating the expectation
values using samples from it.

2.2. Selection function

We train a multilayer perceptron (MLP) neural network to
predict the probability of detection pdet(θ) for CNN-based
detectors of strong gravitational lenses. This neural network
is trained to classify between a set of θ that results in the
detection of strong lensing systems and a set that results in
a non-detection.

To generate training data, we apply a CNN detector to a
set of simulated low-resolution strong lensing images. This
reflects the lens search procedure in LSST-like survey data.
Lenses with parameters θ which are detected by the CNN
are classified as detectable, and the missed lenses are classi-
fied as non-detectable. An illustration of the training data
generation is shown in Figure 1.

The neural network that predicts the selection function

Figure 1. Flow chart illustrating the generation of training data
used for training the neural selection function. The CNN-based
lens finder is applied to simulated low-resolution strong lensing
images with model parameters θ sampled from a prior distribution.
Two sets of model parameters are made based on whether the im-
ages were detected as strong lenses. The neural selection function
is trained to classify between these two sets, where the output
classification probability represents the probability of detection
pdet(θ).

pdet(θ) is composed of an input layer and a hidden layer
each with 256 neurons, in addition to a final layer outputting
a single value. We use the Exponential Linear Unit activa-
tion function (Clevert et al., 2015, ELU) for the first two
layers, and the sigmoid activation for the output of the net-
work. The final layer predicts the probability of θ being
classified as detectable, which gives us a prediction for the
probability of detection pdet(θ). The weights of the neu-
ral network are updated using the Adam optimizer with a
constant learning rate of 10−4. Our training data consists
of two equal sets of 10,000 detectable and non-detectable θ
parameters. The network is trained for 10,000 epochs with
a batch size of 1000.

3. Results
We compute the posterior p(λ|{xi}) using Equation 6 from
a set of 1000 CNN-detected strong lensing observations. As
detailed in section 2.2, we first train a neural network to
predict the CNN detector selection function pdet. Then, we
use the neural network’s prediction of pdet in Equation 4
to compute the normalization factor α(λ) over a grid of λ
values. Separately, we train a BNN to infer the lensing pos-
terior p(θ|xi) for the individual strong lensing observations.
In the final step, we use our prediction of α(λ) and p(θ|xi)
to compute the posterior of population hyperparameters
p(λ|{xi}) from Equation 6. To approximate the expectation
values from Equation 6, we use 100,000 samples from the
posterior distribution p(θ|xi) for each observation xi. We
compute α(λ) by approximating the integral from Equation
4 using 10,000 samples from the population distribution
p(θ|λ). The computation of α(λ) is repeated 1000 times
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Figure 2. Predicted posterior p(λ|{xi}) given a set of 1000 strong
lensing observations detected using the CNN strong lensing detec-
tor with the selection bias correction included within the hierarchi-
cal model (red contours) and without (blue contours). The 68%,
95% and 99.7% probability regions are shown for both posterior
distributions. This result demonstrates that ignoring the effects of
the selection bias caused by the CNN detectors leads to a biased
inference of the population hyperparameters λ.

using different samples from p(θ|λ) and averaged over in
order to reduce noise in its prediction. This helps mitigate
instabilities that may occur when dividing by the normaliza-
tion factor α(λ) in Equation 6. A flow chart illustrating the
problem setup for inference is shown in Figure 5.

For our problem, the hyperparameters λ that we wish to
infer are the mean µ and standard deviation σ of a log-
normal distribution describing the population distribution
of strong lensing Einstein radii RE . As an initial test, we
apply a mask on the strong lensing light for lensing systems
with Einstein radius smaller than 0.8 arcseconds, making
it impossible for the CNN finder to detect the presence of
strong lensing. This leads to a more important selection
bias towards systems with larger Einstein radii, and for the
initial test, allows to more intuitively visualize the impact
of selection bias on the final result. In Figure 2, we show
results of the predicted posterior p(λ|{xi}) for two different
scenarios: one in which the hierarchical model includes the
correction due to selection bias and the other where it is
ignored (i.e. whether α(λ) is included in Equation 6).

We also perform a test to verify if our modeled selection
function pdet accurately portrays the performance of the
CNN strong lensing detector. To do so, we start by generat-
ing a new set of 10,000 strong lensing observations based on
a wide range of model parameters θ, including the Einstein
radius RE . Then, in the first case, we evaluate the detec-
tion probability pdet(θ) for these θ samples, and keep the
samples considered as detected if they satisfy ρ < pdet(θ),
where ρ is a number randomly sampled between zero and

Figure 3. The predicted number of strong lenses detected from a set
of 10,000 simulated strong lenses by the CNN detector (black line)
and by our modeled selection function pdet (dotted red line) as a
function of the Einstein radius RE . The neural selection function
pdet is capable of accurately portraying the selection mechanism
of CNN-based lens detectors.

one for each θ. We denote this set of detected θ samples
as θpdet

. In the second case, we apply the CNN detector
directly on the strong lensing images. For the observations
that passed as a detection, we keep the samples of θ that
were used to generate them. We denote this set of samples
as θCNN. In Figure 3, we plot the distribution of the Einstein
radius parameter RE from both sets of θpdet

and θCNN. This
test allows us to verify if our modeled selection function
pdet(θ) accurately reflects the overall distribution of strong
lenses that are discovered by the CNN detector.

4. Discussion
The framework presented in this paper allows for the hier-
archical inference of population-level parameters of strong
lensing systems, including the effects of selection functions.
In the first stage of inference, the posteriors of the param-
eters of individual lensing systems are obtained. In the
second stage, the distribution of the parameters of the gen-
eral population of lenses is inferred using the posteriors of
individual lens parameters. In this second stage of infer-
ence, it is also essential to include the effect of the selection
function.

It is of course possible to forgo a hierarchical framework
and infer population-level parameters in a one-stage in-
ference setup. Simulation-based (or likelihood-free) infer-
ence methods that directly model target quantities such as
p(x|λ) have proven to be promising methods for inferring
population-level parameters in cosmology (Brehmer et al.,
2019; Coogan et al., 2020; Gerardi et al., 2021).

However, Bayesian hierarchical modeling can be a flexible
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and powerful alternative, providing several advantages. A
distinct advantage of hierarchical modeling is the fact that
the inference of the population-level parameters is done in-
dependently from the inference of individual systems. In
this framework, the posterior of the lens parameters given
the data p(θ|xi) (the noise term) can be calculated once with
expert (lensing) knowledge, either using machine learning
based methods (e.g., Hezaveh et al., 2017; Wagner-Carena
et al., 2021; Legin et al., 2021) or likelihood-based methods
(e.g., Gu et al., 2022). The inference of population-level
parameters could then be carried out and explored without
redoing any analysis of the observed data. The term p(θ|λ),
often called the “theory term”, describes the theoretical pre-
diction of lens parameters under a proposed hyperparameter.
This allows one to explore any theoretical model in a modu-
lar way using the same set of posteriors, p(θ|xi), calculated
earlier.

In this work, we modeled the selection function pdet(θ)
with neural networks, facilitating accurate calculation of
the posterior of the hyperparameters without the need for
repeated Monte Carlo simulations. Once learned, the same
neural selection function could be used to recalculate the
denominator of Equation 3 for any new theoretical model
under consideration.

The approach proposed here uses simulation-based infer-
ence and machine learning models to learn surrogate models
for the various modules that form a hierarchical inference
model. This allows taking advantage of the power and the
versatility of neural networks while retaining the benefits
and the interpretability of Bayesian hierarchical frameworks,
where uncertainties are correctly propagated from one level
to the next.
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DeepLens: deep learning for automatic image-based
galaxy-galaxy strong lens finding. MNRAS, 473(3):3895–
3906, January 2018. doi: 10.1093/mnras/stx1665.

Legin, R., Hezaveh, Y., Perreault Levasseur, L., and
Wandelt, B. Simulation-Based Inference of Strong
Gravitational Lensing Parameters. arXiv e-prints, art.
arXiv:2112.05278, December 2021.

Li, R., Napolitano, N. R., Tortora, C., Spiniello, C., Koop-
mans, L. V. E., Huang, Z., Roy, N., Vernardos, G., Chat-
terjee, S., Giblin, B., Getman, F., Radovich, M., Covone,
G., and Kuijken, K. New High-quality Strong Lens Can-
didates with Deep Learning in the Kilo-Degree Survey.
ApJ, 899(1):30, August 2020. doi: 10.3847/1538-4357/
ab9dfa.

Mandel, I., Farr, W. M., and Gair, J. R. Extracting distri-
bution parameters from multiple uncertain observations
with selection biases. MNRAS, 486(1):1086–1093, June
2019. doi: 10.1093/mnras/stz896.

Metcalf, R. B., Meneghetti, M., Avestruz, C., Bellagamba,
F., Bom, C. R., Bertin, E., Cabanac, R., Courbin, F.,
Davies, A., Decencière, E., Flamary, R., Gavazzi, R.,
Geiger, M., Hartley, P., Huertas-Company, M., Jack-
son, N., Jacobs, C., Jullo, E., Kneib, J. P., Koopmans,
L. V. E., Lanusse, F., Li, C. L., Ma, Q., Makler, M., Li,
N., Lightman, M., Petrillo, C. E., Serjeant, S., Schäfer,
C., Sonnenfeld, A., Tagore, A., Tortora, C., Tuccillo,
D., Valentı́n, M. B., Velasco-Forero, S., Verdoes Kleijn,
G. A., and Vernardos, G. The strong gravitational lens
finding challenge. A&A, 625:A119, May 2019. doi:
10.1051/0004-6361/201832797.

Moore, C. J. and Gerosa, D. Population-informed priors
in gravitational-wave astronomy. Phys. Rev. D, 104(8):
083008, October 2021. doi: 10.1103/PhysRevD.104.
083008.

Park, J. W., Wagner-Carena, S., Birrer, S., Marshall, P. J.,
Lin, J. Y.-Y., Roodman, A., and LSST Dark Energy Sci-
ence Collaboration. Large-scale Gravitational Lens Mod-
eling with Bayesian Neural Networks for Accurate and
Precise Inference of the Hubble Constant. ApJ, 910(1):
39, March 2021. doi: 10.3847/1538-4357/abdfc4.

Perreault Levasseur, L., Hezaveh, Y. D., and Wechsler, R. H.
Uncertainties in Parameters Estimated with Neural Net-
works: Application to Strong Gravitational Lensing. ApJ,
850(1):L7, November 2017. doi: 10.3847/2041-8213/
aa9704.

Savary, E., Rojas, K., Maus, M., Clément, B., Courbin,
F., Gavazzi, R., Chan, J. H. H., Lemon, C., Vernardos,
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A. Appendix

Figure 4. Examples of generated strong gravitational lensing simulations. The set of simulations used consists of low-resolution wide-area
sky surveys (left) and the corresponding follow-up high-resolution image (right). The probability of detection pdet predicted by our neural
network model is shown in the top corner of each low-resolution image. The strong lensing simulations are composed of a Singular
Isothermal Ellipsoid (Kormann et al., 1994, SIE) with added external shear representing the main lens deflector and a background source
following a Sérsic brightness profile (Sérsic, 1963). We also add stellar light following a Sérsic profile to the main lens deflector galaxy
in the low-resolution images. This is not done for the high-resolution follow-up images as we assume that the stellar light from the
main deflector galaxy is removed in a data preprocessing stage. As a whole, our simulations can be fully described by a 13-dimensional
parameter vector θ.
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Figure 5. Flow chart illustrating the general setup for the inference of the population hyperparameter posterior p(λ|{xi}) for an example
with four generated strong lensing observations {x1, x2, x3, x4}. The grey colored boxes are the neural networks used to perform the
hierarchical inference task. The lens finder (CNN-based detector) is applied to the observations and classifies whether they contain strong
lensing. For the images detected as strong lenses, the posterior of lensing model parameters p(θ|xi) is obtained by applying a Bayesian
Neural Network (BNN) on the followup high-resolution images. The population distribution p(θ|λ), neural selection function pdet(θ)
and predicted lensing posteriors (in this example, p(θ|x3) and p(θ|x4)) are used to compute the posterior of population-level parameters
p(λ|x3, x4).


