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Abstract

Efficiently mapping baryonic properties onto dark
matter is a major challenge in astrophysics. Al-
though semi-analytic models (SAMs) and hydro-
dynamical simulations have made impressive ad-
vances in reproducing galaxy observables across
large cosmological volumes, these methods still
require significant computation times, represent-
ing a barrier to many applications. However, with
Machine Learning, simulations and SAMs can
now be emulated in seconds. Graph Neural Net-
works (GNNs) are a powerful class of learning
algorithms which can naturally incorporate the
very structure of data, and have been shown to
perform extremely well on physical modeling,
and among the most inherently graph-like struc-
tures found in astrophysics are the dark matter
merger trees used by SAMs. In this paper we
show that several baryonic targets—as predicted
by a SAM—can be emulated to unprecedented
accuracy using a trained GNN, four orders of mag-
nitude faster than the SAM. The GNN accurately
predicts stellar masses for a range of redshifts,
and interpolates successfully at redshifts where
it was not trained. We compare our results to
the current state of the art in the field, and show
improvements in mean-squared error of up to a
factor of four.
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1. Introduction
In the hierarchical paradigm of ΛCDM cosmology, dark
matter is a crucial constituent of galaxy formation. While
modeling the evolution of universes with only dark matter
can be done both analytically (Sheth et al., 2001) or through
numerical N-body simulations (Aarseth et al., 1979; Efs-
tathiou et al., 1985; Maksimova et al., 2021), co-evolving
dark matter and baryons still represents a major challenge,
as no simple, direct mapping between the two exists (Contr-
eras et al., 2015; de Santi et al., 2022). Instead we turn to
simulations for modeling these complex interactions. One
widely accepted framework for doing so is semi-analytic
models (SAMs), which in the last two decades have made
it possible to populate cosmologically significant volumes
with galaxies (Somerville et al., 2008; Somerville & Davé,
2015; Naab & Ostriker, 2017). Although SAMs achieve
much greater computational efficiency than hydrodynamic
simulations by combining dark matter merger trees with
a suite of physically motivated recipes for evolving the
baryonic components of galaxies, they still require several
hundreds of CPU hours to fill a (75Mpc/h)3 simulation
box (White & Frenk, 1991; Somerville & Primack, 1999;
Benson, 2012; Lacey et al., 2016; Lagos et al., 2018).

Kamdar et al. (2016); Agarwal et al. (2018); Jo & Kim
(2019); Lovell et al. (2022); de Santi et al. (2022) each
attempt to map between dark matter and galactic baryonic
properties using simple machine learning (ML) algorithms,
like Extremely Randomized Trees, Random Forests, Multi-
Layer Perceptrons or a combination of the above. These
methods all use only features from the final halos at z = 0,
or summary statistics believed to encode the merger history
along with the features of the z = 0 halo to learn this map.
Even in cases where these methods were able to predict
the median values of a quantity with relatively low error,
they typically underestimate the dispersion in the baryonic
property at a given halo mass (Agarwal et al., 2018).

In this work, we present a new method for learning this
non-trivial mapping, using the natural choice for learning
on merger trees, a Graph Neural Network (GNN). The GNN
outperforms all previous models in the literature. This indi-
cates that exploiting the inherent structure of the merger tree
indeed is the stronger choice for mapping directly between
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Figure 1. An illustration of our technique. Merger trees are encoded as graphs, which are then passed trough a GNN. Messages are passed
forward in time only, since merger trees are directed in time. Node states are updated by applying a learnable function f to the current
node states, applying a learnable function g to the mean of the node states of the neighboring nodes and adding these two as described
in §3. Latent space is marked by shaded colors. Adding neighborhood information is marked by mixing of colors. After five of these
message-passing steps, the graph nodes are summed over, and this sum is then decoded by another learnable function, h, which gives the
predictions and the Gaussian covariance matrix. All learnable functions are MLPs.

dark matter and baryonic properties.

2. Simulations and Data
We use the dark matter only version of the IllustrisTNG
simulation, TNG-100-1-Dark. This simulation contains
(1820)3 particles within a box of 75 h−1 on a side. This
implies a dark matter particle mass of 6 × 106 h−1M⊙.
The halo finding code ROCKSTAR (Behroozi et al., 2013a)
has been run on 99 snapshots from this simulation, and the
CONSISTENTTREES (Behroozi et al., 2013b) code is used
to construct merger trees from these halo catalogues. See
Gabrielpillai et al. (2021, hereafter G21) for more details
on the halo finding and merger tree algorithms. See the

appendix for details on our treatment of the merger trees.
We then run the well-established Santa Cruz semi-analytic
model (Somerville & Primack, 1999; Somerville et al., 2008;
2015) on the merger trees described above. The current
version of the SC-SAM is documented in G21.

SAMs output a large range of baryonic galactic properties,
but for exploring the possibility of emulating them with a
GNN, we pick a few quantities of interest.

The main target of interest is stellar mass (log(M∗/M⊙),
hereafter M∗). This is the central quantity for both creating
mock catalogues and for simulators to successfully repro-
duce, and is therefore also the main focus of this project. To
explore the possibility of emulating other baryonic proper-
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ties, we also include a range of other targets. We include
cold gas (ISM) mass (log(Mcold/M⊙), hereafter Mcold),
black hole mass (log(MBH/M⊙), hereafter MBH ), cold gas
(ISM) metallicity (log(MZgas

/Mcold)), hereafter Zgas), in-
stantaneous Star Formation Rate (log(SFR/M⊙/yr), here-
after SFR), and Star Formation Rate (SFR) averaged over
100 Myr (log(SFR100/M⊙/yr), hereafter SFR100).

3. Graph Neural Networks
In machine learning, the most successful models are the
ones which embed well-motivated inductive biases into the
model that one wishes to fit—such as convolutional neu-
ral networks for images or recurrent neural networks for
sequences. Since halo and galaxy evolution are naturally
encoded in merger trees, which are graphs, a Graph Neural
Network (GNN) is a natural choice of architecture when re-
gressing quantities from a merger history, such as mapping
galactic baryonic physics onto dark matter. GNNs are neu-
ral networks, but for graph-like data. They are usually im-
plemented as a sequential series of message-passing/graph
convolutional layers (Kipf & Welling, 2017; Battaglia et al.,
2018) which pass information from the nodes along the
edges of the graph, followed by a differentiable pooling
function and a decoder function, which is usually a Multi-
Layer Perceptron (MLP) (Rumelhart et al., 1986).

In this project we use GraphSAGE convolutional layer
(Hamilton et al., 2017). With each application of this layer,
each node is embedded from the input state xi into a hidden
state x′

i, through:

x′
i = W1xi +W2 ·meanj∈N (i)xj (1)

where W1 and W2 are learnable weight matrices and N (i)
denotes the neighborhood of node i. Thus, W1 operates on
information from the node itself, and W2 on the mean of
the node states of the neighborhood nodes. An activation
function, is applied to the output of this mapping, allowing
expression of nonlinear functions. In this work we use the
ReLU activation function between these GraphSAGE layers.
We train the model by maximizing a Gaussian likelihood.

A description of the architecture of the model, as well as
training details, core concepts about graphs and information
about the loss function can be found in Appendix §B - E.

4. Results
In this section, we introduce the metrics used to characterize
the performance of the GNN, and present our results. We
compare our results to results from two other frameworks.

• Our M∗ prediction will be compared to the more
widely used method for connecting halo masses and

Table 1. Metrics for the methods discussed in this paper. GNN
denotes the results of our model using the full merger history and
all halo parameters. Final halo denotes the results of our model
using all halo parameters for the z = 0 halo, i.e., the final halo.
This is the current state-of-the-art (SOTA) method. We bold the
best performance for each metric for each target variable.

Target Method σ [dex] Bias [dex] ρPearson

M∗ GNN 0.070 0.002 0.997
Final halo 0.132 0.003 0.990
AM 0.311 0.000 0.945

Mcold GNN 0.161 -0.009 0.954
Final halo 0.182 0.001 0.941

MBH GNN 0.127 -0.001 0.975
Final halo 0.175 -0.013 0.951

Zgas GNN 0.123 -0.005 0.974
Final halo 0.151 -0.007 0.960

SFR GNN 0.353 -0.025 0.936
Final halo 0.392 0.002 0.921

SFR100 GNN 0.347 0.022 0.938
Final halo 0.388 0.003 0.922

galactic stellar masses, Abundance Matching (AM)
(Vale & Ostriker, 2004).

• In order to faithfully compare to the SOTA, we train
a MLP on the z = 0 halos (final halos) of our dataset.
This is comparable to the methods in the literature, and
avoids dataset biases.

Results from using the GNN are compared to results from
these two methods in Table 1. The GNN using the full
merger history vastly outperforms the current SOTA and
traditional methods across variables, except for negligible
differences in the bias. Note that models regressing more
targets generally performed better due to weight smoothing.
Results cited are for models trained to predict all targets
unless otherwise stated.

4.1. Metrics

We will primarily compare estimators using the scatter
(RMSE) of their predictions with respect to the truth, defined
as:

σ(∆y) =

√
1

Ntest

Ntest∑
(∆y −∆y)2 (2)

where ∆y ≡ y − ŷ is the residual of a single prediction and
∆y is the mean of the residuals. Since this metric does not
measure any systematic offset in the residuals we introduce
the bias as an auxiliary metric (which we will not explicitly
optimize for), i.e.:
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bias(∆y) =

Ntest∑
∆y/Ntest (3)

The bias measures systematic offset. Since the scatter is sus-
ceptible to outliers, we also include the Pearson correlation
coefficient (ρ), i.e., the linear correlation between the target
and the model prediction: ρ ≡ cov (y, ŷ)/σyσŷ .

4.2. Stellar Mass at Other Redshifts

Whether a given ML model generalizes outside of the dis-
tribution of data it has seen during training is crucial to
evaluate whether its scientific potential. In astrophysics,
generalization to redshifts not seen during training is essen-
tial. We investigated this by:

1. Training and testing models at individual z ≥ 0. This
generally works very well, and the model has good accuracy
as can be seen in Figure 2.
2. Training a general model by pooling training sets at z ∈
{0, 0.5, 1, 2}, and testing at z ∈ {0, 0.5, 1, 2}. Compared to
training and testing at individual redshifts, we obtain similar
precision at all redshifts.
3. Pooling training sets at z ∈ {0, 0.5, 1, 2}, and testing
at z ∈ {0.25, 0.75, 1.5, 1.75} where the model was not
trained. Surprisingly, we obtain comparable bias and scatter
to where the model was trained.
Although not explicitly shown, we also observed that if one
extrapolates instead of interpolating between redshifts seen
during training, the results are both biased and have high
scatters, although they still have lower scatter than the SOTA
methods.

Figure 2. Median, 16th and 84th percentile of scatters from 10
models trained to predict only M∗ at a series of redshifts in three
different ways. Red, black, and green correspond to experiment 1,
2, and 3 in §4.2. The model successfully predicts M∗ at unseen
redshifts.

Features used σ [dex] Nfeatures

All 0.0776 37
Only redshift 0.1704 1
None/Empty tree 0.2574 0
Only mass 0.1436 1
Only NFW1 profile 0.1082 2
Only Vmax 0.1194 1
Redshift and NFW profile 0.0993 3

Table 2. Results for feature ablation for predicting only M∗. Train-
ing on a smaller subset of features renders information about the
importance of each subset. Interestingly, the empty tree regresses
significantly better than abundance matching, demonstrating that
there is significant information in the pure structure.

5. Feature Importance
Training and evaluating a GNN on our considered datasets
can act as a metric for what features are most important
in determining the properties of a galaxy. To explore this,
we perform experiments where we only include certain sets
of features during both training and testing of the GNN.
Besides a series of physically motivated sets of quantities
(see Table 2) from the literature (Rodrı́guez-Puebla et al.,
2016), we also attempt to regress M∗ from an empty tree,
i.e., a tree with no features. The merger tree then contains no
information but that encoded in the geometric structure itself.
This approach gives less precise predictions than using the
final halo only, but outperforms abundance matching.

6. Discussion
Although this paper shows that highly accurate mappings
between dark matter merger trees and galactic properties
exist, there is still significant scatter between the GNN and
SAM Mcold and SFRs. It should, however, be noted that
these quantities have high uncertainties from the SAM. To
test if the GNN learns physically meaningful relationships,
we analyze the interdependence of the target residuals. We
find that the residuals between the two SFR targets and
Mcold are strongly correlated (see Figure 5 in the appendix)
i.e., if the GNN predicts a too high Mcold, it also predicts a
too high SFR, analogous to the Kennicutt-Schmidt relation
(Kennicutt, 1998). The improvement in these three quanti-
ties when exploiting the full merger history is smaller than
expected, since they are thought to be strongly connected to
the merger history of the galaxy (Somerville & Davé, 2015).

For M∗ and MBH , we observe a highly significant improve-
ment when including merger history, as the reconstruction
scatter is almost halved when including the merger tree,
compared to using only the final halo.

Testing the median and dispersion relations between the
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halo mass and target quantity, we observe that the GNN
predictions not only reproduce the median relation, but also
the dispersion (see Figure 6 in the appendix).

7. Conclusion
Using the full merger history, we greatly improve upon the
current SOTA for learning baryonic physics and mapping it
onto dark matter only simulations. The improvement from
using the merger history is consistent across all features,
although varying in strength. The model works at a range of
redshifts and can reliably interpolate between redshifts, even
if not trained on galaxies at a given redshift. The trained
model is 4 orders of magnitude faster than the SC-SAM.
Our code is publicly available at https://github.
com/astrockragh/GraphMerge
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A. Further Notes on Data
To ensure that the galaxies in the dataset have reliable features and targets, we employ a set of selection criteria. First, only
merger trees where the final halo has a mass of 1010M⊙ or above are included. This choice is made as the mass of the
final halo indicates both the reliability with which the dark matter properties can be measured as well as the reliability of
the SAM baryonic properties derived from said dark matter properties. Secondly, only central galaxies are included, since
central and satellite galaxies are believed to have different relationships with their host halos (Hearin et al., 2016).

In any given merger tree, there can be upwards of millions of nodes, some reductions are made. Since we are mainly
interested in probing the merger history, we preserve nodes/halos that are either:

• A progenitor node, i.e., the first time a halo was detected in the simulation

• Pre-merger nodes, i.e., halos the snapshot before they merge

• Post-merger nodes, i.e., halos that are the direct result of a merger

• The final node, i.e., the final halo

This reduces the number of nodes by a factor of ∼10-50, depending on the merger tree in question. This, of course, produces
a strong inductive bias, since smooth accretion modes are not included. We also limit the total number of nodes to be
< 2 · 104, which results in the exclusion of 107 merger trees. Since we regress logarithmic targets, only galaxies with
non-zero target quantities are included (this excludes 470 trees). In total, the z = 0 dataset consists of 108,338 merger trees.

In the basic dataset, we include all dark matter features that are not IDs, x,y,z positions, or x,y,z velocities, even features not
explicitly used by the SAM.

As outlined in Kuhn & Johnson (2013), it is important that the final model evaluation is made on data that is not used in
either the training nor for optimizing hyperparameters. Therefore we here split our data in three groups, a training set, a
validation set used for evaluating performance during hyperparameter tuning, and a test set for independently evaluating the
performance of the final GNN. The test set is never used during training or hyperparameter optimization.

A 70/10/20 split is used. After optimizing the hyperparameters via the validation set, it is absorbed into the training set for
the final training of the models before testing.

Since all hyper-parameter tuning is done at z = 0, only a training and testing set are constructed for predicting at z > 0.
For training and testing at z > 0, it is important to keep in mind that most galaxies at any z = z1 will be a progenitor of a
galaxy at z2 < z1. Thus, if one were to naively train a model on baryonic quantities at both z1 and z2 with randomly chosen
training and testing sets, there would be significant information leakage from the training to the test set.

Therefore, we first construct the z = 0 dataset according to the above prescription. Next, for a dataset at any zn > 0, for
every merger tree, we test if it contains any part of any merger tree in any dataset at a redshift lower than zn. If it does, we
assign it to the set which the descendant galaxy is part of. All merger trees not assigned to either set are then split such that
the overall dataset at zn has an 80/20 split between training and testing.

B. Model Architecture
Here we wish to describe the architecture a bit more in depth for the purpose of reproducibility. The architecture is visualized
in Figure 3. The merger tree is passed through a 2-layer Multi-Layer Perceptron (MLP) to encode the node state before
any graph convolutional layers. Then the encoded merger tree is passed through 5 GraphSAGE layers, each with a ReLU
activation layer between. The encoded merger tree is then summed over with a global sum pooling. Using a global max
pooling renders similar performance. Each of the targets then has its own 3-layer MLP decoder “head.” “Heads” refers to
different branches of the model that all take the same input, which allows each head to predict more independently of the
others. Thus, each target/covariance component will have its own independent decoding function that is not influenced by
the backpropagation from other predicted quantities, whereas the graph convolutional layers will all be influenced by all
targets. If the uncorrelated Gaussian loss is used, no off-diagonal components of the covariance matrix are predicted, and Σ̂
is diagonal and corresponding to just having the usual Gaussian uncertainties. The layer normalization description can be
found in Ba et al. (2016). After the sequence of convolutional layers, a differentiable global pooling operator is applied
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across all nodes in order to standardize the output size. The dimensionality of the latent space (known as the number of
hidden states) was 128.

Figure 3. A diagram of the model for predicting values and the full-covariance matrix. Nt is the number of targets one wishes to regress.
The number of times a given block is repeated is written by the upper right corner of the block. A linear layer is the same as a 1-layer
MLP. The flow is from left to right, but inside each box the flow is from top to bottom. Each layer operates with 128 hidden states.

C. Training the Model
We train the models using the Pytorch OneCycleLR learning rate scheduler (Smith & Topin, 2018; Paszke et al., 2019),
using a max learning rate of 10−2 and a batch size of 256 using the Adam optimizer (Kingma & Ba, 2017). The models
were trained for 1000 epochs when optimized for all targets, and 500 for 2 targets or less, as this was determined during
hyperparameter2 optimization to be above the average number of epochs required for a model to converge. A Gaussian
quantile transform 3, which maps each parameter to a Gaussian distribution defined by the quantiles of the parameter in
question, was fit on the training set and applied to all input data before training, except for categorical data such as the
number of progenitor halos or whether the halo had recently undergone a major merger, which is encoded as a boolean in
the data. This makes training more stable at the risk of destroying some information. We also attempted using a standard
scaler, which scales data to have zero mean and unity variance. This resulted in slightly higher scatters by about 3-5%.

We employ a max learning rate of 10−2, a 15% start percentage and a final division factor of 103.

D. Core Concepts of Graphs
GNNs are a species of neural network which operates on graph-structured data (Scarselli et al., 2008; Bronstein et al., 2017;
Battaglia et al., 2018). For our purpose, the graphs G on which GNNs operate is usually defined as 2-tuples, G = (V,E),4

where V = {vi}i=1:Nv , where Nv is the total number of nodes, vi ∈ RDv

is a set of node attribute vectors of dimensionality
Dv and E = {(ek, rk, sk)} is a set of edge attribute vectors ek ∈ RDe

of dimensionality De, and indices rk, sk ∈ {1 : Nv}
of the “receiver” and “sender” nodes connected by the k-th edge.

In this work, only node attributes and edge indices are used. Note that our graphs are directed, since merger trees naturally

2The hyperparameters of the model and training scheme are defined as parameters not of the model itself, but about the model or
training scheme. Examples include the dimensionality of the latent space, the number of layers and the learning rate.

3sklearn source code
4We adhere closely to the notation used in (Battaglia et al., 2018; Cranmer et al., 2019) for formal definitions.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
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Figure 4. Histogram of the SAM M∗ versus the model-predicted M∗ with logarithmically colored bin heights. The left panel shows
the target-prediction relation of the method presented in this paper, and the right panel shows target-prediction relation of the common
abundance matching approach. As can be seen in Table 1, our results improve by a factor of two over the SOTA and is comparable to
lower information limit of the SAM outputs.

are directed in time. A directed graph means that information can only be passed one way on a given edge, which for our
purpose follows the flow of time since propagating information backwards in time would break causality.

The neighborhood of node i consists of all nodes that are connected to node i by an edge. Note that for a directed graph,
this only includes the set of nodes for which rk = i. Some prefer to instead define two separate notions of neighborhoods
for directed graphs, an incoming neighborhood and an outgoing neighborhood. Our definition would be the same as the
incoming neighborhood. We denote the neighborhood of node i by N (i).

E. Loss Function
The loss function L is central to the optimization and performance of the GNN, as the parameter set θ which make up the
GNN is optimized to satisfy min(Lθ({G}train)). In this work we employ a generalized Gaussian Negative Log-Likelihood
(NLL).

For a single input, the general Gaussian NLL is defined as:

L(y, ŷ, Σ̂) ≡ ln(|Σ̂|)
2

+
1

2
(y − ŷ)

T
Σ̂−1 (y − ŷ) (4)

where, y is the true target vector, ŷ is the network prediction vector, Σ̂ is the predicted covariance matrix, and |Σ̂| denotes
its determinant. These are then extended to batch form by summing over all inputs in a batch.

In this paper, the quoted results are obtained via a purely diagonal covariance matrix.

F. Stellar Mass Results
As the central quantity of interest, the stellar mass received the most attention. The test set results were a scatter of 0.070
dex, with 0.002 dex bias. This is shown in Figure 4, along with a comparison to the usual abundance matching approach.5

Abundance matching (Vale & Ostriker, 2004), simply rank-orders all galaxies and halos by mass and assumes a monotonic
matching relation exists between the two. We include this comparison as a baseline due to its simplicity and widespread use.

Figure 4 shows the relation between target value and predicted value, along with distributions on the respective axes. The

5Other metrics can be found in Table 1
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figure shows the (target, prediction)-relation as a 2D histogram with logarithmic bin heights. If this relation follows the
diagonal, that would indicate perfect predictions. The tighter the relation follows the diagonal, the better.

A few comparisons are beneficial to keep in mind:

• Training a GNN to predict only M∗ yields a scatter of 0.078 dex, significantly worse than the performance when
training a GNN to predict all quantities simultaneously.

• The performance of the GNN worsens to 0.132 dex when using only the parameters of the final halo, indicating a
strong dependence on assembly history.

• The scatter of the GNN M∗ predictions is comparable to the SAM probabilistic limit as defined above, which renders a
scatter of 0.043 dex (see Table 1).

G. Further interpretation plots
Residual-residual plots are very useful for investigating the interdependence between predictions. Here we provide a plot to
illustrate these interdependencies. Figure 5 shows residual-residual relations for the GNN relative to the SAM targets, along
with the slope (a) and intercept (b) of a line fitted using least squares (not using the σ predicted by the model).
From this plot we clearly observe a strong interdependence between SFR- and SFR100-residuals (as expected), positive
correlations between M∗- and SFR / SFR100 / Zgas-residuals, positive correlations between Mcold and SFR / SFR100-
residuals (analogous to a Kennicutt-Schmidt relation) and a negative correlation between Mcold- and Zgas-residuals.

Halo mass-variable relations are also very useful for identifying the regions where the model fails to reproduce the SAM.
This general comparison can be found in Figure 6. Here we quickly identify one of the reasons for the GNNs poor
performance on SFR and SFR100, namely that it does not successfully capture the two diverging branches of SFR around
Mhalo ≈ 11.7, regressing only the lower branch accurately. We also observe that M∗,Mcold, Zgas and MBH generally
follow both the median relation as well as reproducing the scatter. The scatter is not reproduced for the two SFR targets.
This is a problem discussed in Agarwal et al. (2018), which our method also improves significantly upon.
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Figure 5. Residual for all targets, along with linear (a*x+b) fits. Each window is annotated with the slope (a) and the intercept (b) of the
residual-residual relation in question. The plot is made with the corner package (Foreman-Mackey, 2016).
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Figure 6. Relation between halo masses and target parameter for all targets for both the SAM and the GNN predictions, with outliers
clearly marked. We furthermore show general trends in the right column, where the dashed and solid lines show the medians and the
shaded areas show the 16 and 84th percentiles for the parameter in question for both the SAM and GNN. Here we immediately see the
source of some of the errors, as for example, the inability of the GNN to accurately capture the two diverging branches in SFR.


