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Abstract
Many astrophysical analyses depend on estimates
of redshifts (a proxy for distance) determined
from photometric (i.e., imaging) data alone. Inac-
curate estimates of photometric redshift uncertain-
ties can result in large systematic errors. However,
probability distribution outputs from many photo-
metric redshift methods do not follow the frequen-
tist definition of a Probability Density Function
(PDF) for redshift — i.e., the fraction of times
the true redshift falls between two limits z1 and
z2 should be equal to the integral of the PDF be-
tween these limits. Previous works have used the
global distribution of Probability Integral Trans-
form (PIT) values to re-calibrate PDFs, but off-
setting inaccuracies in different regions of fea-
ture space can conspire to limit the efficacy of
the method. We leverage a recently developed
regression technique that characterizes the local
PIT distribution at any location in feature space
to perform a local re-calibration of photometric
redshift PDFs resulting in calibrated predictive
distributions. Though we focus on an example
from astrophysics, our method can produce pre-
dictive distributions which are calibrated at all
locations in feature space for any use case.

1. Introduction
Galaxy distance, as measured by redshift, is essential for
estimating intrinsic luminosity and 3D location in space,
which is crucial information for many astrophysical stud-
ies. High-precision redshifts require resource-intensive ob-
servations and will only be feasible for a few percent of
galaxies in upcoming photometric surveys. Thus, photomet-
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ric redshifts (photo-z’s)—redshifts estimated from imaging
alone—will be necessary. Furthermore, accurate photo-z’s
are critical for some science cases (e.g., weak lensing cos-
mology), but PDFs from both main methods of photo-z
estimation (galaxy spectral template-based and machine
learning-based) fail to satisfy the frequentist definition of a
PDF for redshift (Dahlen et al., 2013; Kodra, 2019; Schmidt
et al., 2020). The fraction of times the true redshift falls
between two limits z1 and z2 should equal the integral of a
properly-defined PDF between these limits, for any arbitrary
subset of the test data.

Current metrics used to measure the quality of calibration,
like the distribution of the values of the cumulative distri-
bution function (CDF) evaluated at the true redshift of the
object (the Probability Integral Transform or PIT; see Eq. 1)
can favor pathological but un-informative PDFs (Schmidt
et al., 2020). Moreover, overall uniformity of PIT values
is possible even if particular subsets of the same test data
are poorly-calibrated (Zhao et al., 2021). If the PDFs are
well-calibrated, then the distribution of the PIT values of a
test sample will be uniform between 0 and 1 or their corre-
sponding CDF will follow the identity line for any arbitrary
subset of the test data. The same can be visualized with
a P-P plot that shows the empirically calculated CDF ver-
sus their theoretical expected values. Ideally, the P-P plot
should closely follow the identity line, but it often does not.

Several previous works have studied PDF re-calibration
(e.g., Niculescu-Mizil & Caruana 2005; Rau et al. 2015;
Kuleshov et al. 2018), though none can ensure that PDFs
are well-calibrated at every point in feature space. Bordoloi
et al. (2010) described a method to re-calibrate PDFs using
a single correction factor based on the overall distribution
of PIT values, which ensures a uniform global distribution
of PIT values, but this single correction factor is applied
to all PDFs and does not account for local variations. Im-
portantly, these local inconsistencies in feature space can
be detected using tests like the ones proposed in Jitkrittum
et al. (2020) and Zhao et al. (2021), which we will leverage
in our method.

In this work, we develop a local PDF re-calibration proce-
dure that uses an estimate of the local distribution of PIT
values (from Zhao et al. (2021)) to calculate a correction
factor at any location in feature space. To demonstrate
our method, we use the simulated data from Schmidt et al.
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(2020), which has been used to compare photo-z CDE pre-
diction methods in the past. We start with the marginal
distribution of redshifts in the training set as our initial CDE
estimate for all galaxies. Schmidt et al. (2020) demonstrated
that such a CDE estimate can perform well on many com-
monly used metrics that check for calibration, although it
does not provide information about individual galaxies and
represents the worst case scenario. We use the “training set”
from Schmidt et al. (2020) with about 44,000 objects as our
calibration set; then split the remaining data into two sets:a
validation set (twice as large as the calibration set) and a
larger test set comprised of roughly 250,000 instances. We
use one magnitude and 5-colors and their associated mea-
surement uncertainties as the features. As the “true CDEs”
are not known, we shall use data driven methods using the
validation and test sets to evaluate the performance of our
methods.

2. Re-calibration Procedure
Let p̂(z|x) be the initial estimate of the true PDF p(z|x)
of the target variable z (redshift) given the input features
x (galaxy colors and magnitudes). The random variable
corresponding to z is denoted by Z. We define the local
Probability Integral Transform (PIT) corresponding to this
initial estimate as:

P̂IT(z,x) =

∫ z

0

p̂(z′|x)dz′ = F̂ (z|x) (1)

where F̂ is the cumulative distribution function associated
with p̂. Using a labeled calibration set and a suitable re-
gression method (monotonic neural networks; Wehenkel
& Louppe 2019 in our case), we estimate the CDF of PIT
values as a function of x following the method described
in Zhao et al. (2021). The regression algorithm takes both
the features and a value of coverage level (α; drawn from a
Uniform(0, 1) distribution while training) as inputs to get
the CDF of PIT values (rp̂α(x)):

rp̂α(x) := P
(
P̂IT(Z,x) ≤ α|x

)
= P

(
Z ≤ F̂−1(α|x)|x

)
(2)

If our initial PDFs are locally calibrated, then the relation
rp̂α = α should hold for any x, i.e., a plot of rp̂α vs. α
(also called Amortized Local P-P plots or ALP plots) should
closely follow the identity line. Most photo-z estimators do
not produce locally calibrated PDFs and this relation does
not often hold.

To re-calibrate the original PDF estimates p̂(z|x) such that
the relation rp̃α ≈ α holds for the new PDFs, p̃, for a new
unseen test data set, we define, β := rp̂α for each α ∈ G and
define a new cumulative distribution function, F̃ , such that:

F̃−1 (β|x) = F̂−1 (α|x) (3)

Then by construction the new PDFs, p̃, will be calibrated
since

rp̃β(x) = P
(
Z ≤ F̃−1(β|x)|x

)
= rp̂α = β (4)

Now, for z̃ = F̃−1 (β|x) we will have,

∫ z̃

0

p̃(z′|x)dz′ = β (5)

=⇒ p̃(z̃|x)− p̃(0|x) = dβ

dz′
=

dβ

dα
.
dα

dz′
(6)

Eqs. 3 and 1 imply

p̃(z̃|x) = p̃(z|x)

and Eq. 2 implies

dα

dz′
= p̂(z|x)

It is not physical to have any object at redshift 0 so we can
assume p̃(0|x) = 0. This gives us the relation:

p̃(z|x) = p̂(z|x). dβ(α)
dα

(7)

This means that our corrected PDF equals the initial PDF
multiplied by a correction factor which is the local PIT dis-
tribution evaluated at the coverage corresponding to various
redshifts. This relation is very similar to what Bordoloi et al.
(2010) uses to re-calibrate photo-z PDFs except now the
correction factor is calculated using the local PIT distribu-
tion rather than the empirical distribution obtained from the
calibration set as a whole.

To numerically evaluate the correction factor, we use a spline
based interpolator to calculate and evaluate the derivative of
the output of the neural network evaluated on a dense grid
of α for a given galaxy. The new re-calibrated PDFs are
then normalized.

3. Results and Discussion
We apply our method to re-calibrate the initial CDE by
learning the local distribution of PIT values by training rp̂

on the calibration set and use it to re-calibrate the CDEs
in our validation and test sets. To assess the quality of our
re-calibrated CDEs, we train another regression model us-
ing the validation set and its re-calibrated CDEs. We infer
the local CDF of PIT for every object in the test set be-
fore and after re-calibration using the two trained models.
Fig. 1 (top) shows the diagnostic local P-P plot for five
galaxies in the test set. The local P-P plots for the original
CDEs diverge significantly from the identity line, showing
the inadequacy of the original PDF. Global P-P plots for the
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Figure 1. Top: Diagnostic local P-P plot for 5 galaxies before and after our re-calibration method is applied. The local P-P plots for
the original CDEs diverge significantly from the identity line, showing the inadequacy of the original PDF. Center: CDEs for the
corresponding galaxies before and after re-calibration along with their true redshift. Our method can recover multimodalities while
ensuring good local calibration. Bottom: Rudimentary comparison of re-calibrated CDEs with the distribution of true redshifts of other
galaxies having similar photometry. We show an inverse-distance weighted histogram of the redshift distribution of galaxies with similar
photometry along with their CDEs. We observe that the histograms show bimodal distributions when our inferred CDEs are bimodal and
unimodal when the inferred distribution is unimodal, matching expectations.

pathological initial CDE that we chose, would follow the
identity line closely by construction (Schmidt et al., 2020).
This highlights the importance of local tests of calibration.
After re-calibration, the local CDF of PIT for these objects
follow the identity line closely (i.e., the CDF of a uniform
distribution), indicating good local calibration. Fig. 1 (cen-
ter) shows the CDEs for the same galaxies before and after
re-calibration. We not only observe that the re-calibrated
CDEs are more informative but also multimodal CDEs can
be recovered (as are typical for photo-z’s), even when the
input CDE before calibration is unimodal.

Due to noisy and limited information about redshift con-
tained in galaxy images, galaxies with similar photometry
may have different redshifts and vice versa. We want this
property to be captured in photo-z CDEs, requiring them
to be multimodal. As we do not know the “ground truth”
CDEs, we generally have to rely on indirect methods to
assess calibration. In Fig. 1 (bottom), we provide a rudi-
mentary but direct demonstration that the CDEs we pre-

dict are indeed meaningful. We compare the CDEs of the
five galaxies shown with the distribution of true redshifts
of other galaxies with similar imaging data. We identify
those counterparts by searching for other galaxies in the
training set whose colors and magnitudes (rescaled by sub-
tracting the mean and dividing by the standard deviation for
each feature) lie within an Euclidean distance of 0.5 units
of our selected galaxies. Fig. 1 (bottom) shows their red-
shift distribution as an inverse-distance weighted histogram.
We observe that the histograms show bimodal distributions
when our inferred CDEs are bimodal and unimodal when
the inferred distribution is unimodal, matching expectations.

The Cramér-von Mises statistic between the local PIT CDF
of each galaxy in the test set and the uniform distribution is
a measure of the quality of conditional coverage (Schmidt
et al., 2020), and decreases significantly on the entire test
set after re-calibration (Fig. 2), with a mean decrease of
∼ 4.5×. We also see a large improvement in the value of
the CDE Loss (Izbicki et al., 2017), which provides another
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Figure 2. Distribution of the Cramér-von Mises (CvM) Statistic
(i.e., mean squared difference) between the local PIT CDF of each
galaxy in the test set and the CDF of a Uniform distribution. As the
“ground truth” CDEs are unknown, we assess conditional coverage
by training regression models to predict the local PIT CDFs on the
calibration and validation sets. We observe a significant decrease
in the value of CvM statistic for the entire test set, with the average
value decreasing by ∼ 4.5×.

independent metric of conditional coverage, with a decrease
from −0.84 to −10.71 after re-calibration. For comparison,
in Schmidt et al. (2020) the photo-z algorithms considered
yielded CDE losses ranging from −1.66 at worst to −10.60
at best.

This work shows that PDFs can be re-calibrated using local
information and produce better uncertainty estimates. We
show that our method works well even when the initial
CDEs are uninformative. Our method might yield even
better results if applied on initial CDE estimates from a
reasonably good photo-z algorithm. This will be studied in
a future work.
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