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Abstract
Dwarf galaxies are small dark matter-dominated
galaxies, some of which are embedded within
the Milky Way; their lack of baryonic matter
(stars and gas) makes them perfect test beds for
dark matter detection. Understanding the distri-
bution of dark matter in these systems can be
used to pin down microphysical dark matter in-
teractions that influence the formation and evo-
lution of structures in our Universe. We intro-
duce a new approach for inferring the dark matter
density profiles of dwarf galaxies from the ob-
servable kinematics of stars bound to these sys-
tems using graph-based machine learning. Our
approach aims to address some of the limitations
of established methods based on dynamical Jeans
modeling such as the necessity of assuming equi-
librium and reliance on second-order moments
of the stellar velocity distribution. We show that
by leveraging more information about the avail-
able phase space of bound stars, this method can
place stronger constraints on dark matter profiles
in dwarf galaxies and has the potential to resolve
some of the ongoing puzzles associated with the
small-scale structure of dark matter halos.

1. Introduction
Cosmological structure formation is known to proceed
hierarchically—smaller structures seed the formation of
larger structures (White & Rees, 1978). Dark matter (DM)
plays an outsized role in this process, acting as a “scaffold-
ing” on which structure evolution plays out. At the same
time, the precise mechanism of structure formation is keenly
sensitive to the microphysical properties of DM e.g., the na-
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ture of its self-interactions. Deviations from the canonical Λ
Cold Dark Matter (ΛCDM) paradigm of cosmology would
be imprinted in DM clumps (known as halos) on smaller
spatial scales. Robustly characterizing the distribution of
small-scale structures in our Universe may therefore hold
the key to answering one of the major unsolved questions in
particle physics and cosmology—the nature of DM.

Dwarf galaxies are small galaxies, some of which are em-
bedded within larger galaxies like the Milky Way. They
are dominated by DM, making them versatile astrophysical
laboratories for DM studies. A major goal in cosmology and
particle physics is to detect non-gravitational interactions of
DM. One of the main avenues to do so is DM indirect de-
tection; DM would annihilate or decay into standard model
(SM) particles, such as photons or electrons, which can be
subsequently detected. Dwarf galaxies act as ideal targets
for indirect detection searches as they are deficient in stars
and gas, which would otherwise act as backgrounds for such
studies.

An ongoing puzzle in cosmology is the so-called cusp-core
problem, referring to whether the inner density profile of
DM in dwarf galaxies is a cusp (steeply rising) or a core
(flattened) (Navarro et al., 1996; Spekkens et al., 2005). N -
body simulations using ΛCDM cosmology suggest that in
the absence of baryonic (standard) physics, cold DM ha-
los follow the cuspy Navarro-Frenk-White density (NFW)
profile (Navarro et al., 1997), which is characterized by a
steep rise in the density ρ ∝ r−1 at small radii r. However,
recent measurements of stellar dynamics suggest that these
systems could instead have a flattened density profile at their
center, also known as a core (Oh et al., 2011; 2015). Poten-
tial solutions to the core-cusp problem range from stellar
feedback which eject baryons and flatten the DM central
density profile (Navarro et al., 1996; Read & Gilmore, 2005;
Mashchenko et al., 2006; Pontzen & Governato, 2012) to
alternative DM models like self-interactions (Lovell et al.,
2012; Elbert et al., 2015).

DM density profiles in dwarf galaxies are traditionally in-
ferred using observations of the line-of-sight velocities and
angular positions of stars gravitationally bound to these
systems. In particular, Jeans equation relates the velocity
dispersions of tracer stars to the gravitational potential of
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Figure 1. A comparison between the predicted and the true values of the DM parameters on 10,000 test galaxies. For each galaxy, the
predicted parameters are taken to be the marginal medians of the joint posterior and then sorted into bins based on their true values. The
median (solid black line), middle-68% percentile (dark gray band), and middle-95% (light gray band) containment regions of each bin are
shown. The dashed blue line denotes where the predicted values are equal to the true values. The dashed vertical black lines in the left
panel indicate the central slope of a cored (γ = 0) and cuspy (γ = 1) DM profile. The bottom row shows the prediction error ∆x = x̂−x
for a parameter x.

the system (Jeans, 1915; Bonnivard et al., 2015).

Although Jeans modeling has proven highly successful for
modeling DM distributions in dwarf galaxies, there are sev-
eral caveats and limitations associated with this approach
(see e.g. El-Badry et al. (2017); Genina et al. (2020); Chang
& Necib (2021)). For example, Jeans modeling assumes that
the system is in dynamical equilibrium, which has recently
been shown not to hold, given the active merger history of
the Milky Way (see Helmi (2020) for a review). Assump-
tions such as isotropy of the gravitating system are also
often required in order to enable a tractable analysis. Fi-
nally, by relying on a lower-dimensional description of the
data through second moments of stellar velocities, inference
based on Jeans modeling is likely to lose some of the salient
information available in observations. In particular, lever-
aging the full phase-space correlation structure of stellar
kinematics may further inform the latent DM density profile
and lead to stronger constraints.

In this paper, we introduce a new machine learning-based
approach for linking observed stellar properties to the DM
profiles of dwarf galaxies. Our method is based on forward
modeling of simulated dwarf galaxy systems, extracting
representative features from these high-dimensional rela-
tional datasets using graph neural networks, and performing
simulation-based inference for simultaneously extracting
the spatial profiles associated with the DM and stellar com-
ponents of the dwarf galaxy. The method aims to overcome
some of the limitations associated with traditional Jeans
modeling, and we demonstrate some of its advantages in
terms of speed, robustness, and flexibility over established

approaches.

2. Methodology
We describe, in turn, the forward model used in this study
and its realization via simulations, the representation of
stellar kinematic data as a graph, and finally the graph-
processing neural network and inference procedure.

2.1. Datasets and the forward model

In this proof-of-principle exposition, our forward model
is fully specified by the joint distribution function (DF) of
positions and velocities of stars following a certain (a-priori
unknown) spatial distribution (known as the light profile).
These tracer stars are gravitationally bound to a DM halo
with a density profile that we wish to infer. We use the public
code StarSampler1 to generate simulated realizations of
stellar kinematics (6-D position and velocity phase-space
components) from the forward model. StarSampler uses
importance sampling to draw from the DF of positions and
velocities of tracer stars in a given DM potential.

We model the DM profile using the generalized
Navarro–Frenk–White (gNFW) profile (Navarro et al., 1997)

ρgNFW
DM (r) = ρ0

(
r

rs

)−γ (
1 +

r

rs

)−(3−γ)

, (1)

which depends on 3 free parameters: the central density
ρ0, the scale radius rs, and the asymptotic inner slope γ.

1https://github.com/maoshenl/StarSampler

https://github.com/maoshenl/StarSampler
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Figure 2. Example inferred posteriors of the density profile (top
row), enclosed mass profile (middle row), and velocity anisotropy
profile (bottom row) for dwarf galaxies with a cored DM profile
(left) and a cuspy DM profile (right). The dashed blue line is the
true profile, while the black line and two gray bands represent the
median, 68%, and 95% containment regions.

γ = 1 corresponds to the cuspy NFW profile motivated
by simulations, while γ = 0 corresponds to a pure DM
core. Being able to robustly distinguish between the two
possibilities would offer a path towards resolution of the
core-cusp discrepancy, which is one of the high-level goals
of our study.

We assume a stellar density ν(r) that follows the a 3-D
Plummer profile (Plummer, 1911):

ν(r) =
3L

4πr3⋆

(
1 +

r2

r2⋆

)−5/2

(2)

where L is the total luminosity and r⋆ is the scale length.
We also introduce a velocity anisotropy profile β(r) in order
to test the performance of our method under deviations from
sphericity as expected in these systems. β(r) is described
by the equation β(r) = r2/(r2 + r2a) from Osipkov (1979);
Merritt (1985) and has an additional parameter ra which
describes the transition from an isotropic velocity dispersion
at small radii to a radially-biased dispersion at large radii.

In total, our model has 3 DM parameters (ρ0, rs, γ) and
2 stellar parameters (r⋆, ra). Assuming the gravitational
influence from stars is negligible compared to the DM po-
tential, the model is independent of the total luminosity L
in Eq. 2. We sample the central density ρ0 and scale radius
rs log-uniformly distribution from [105, 108]M⊙/kpc

3 and

[−1, 5] kpc and central slope γ uniformly from [−1, 2]. This
implicitly sets the prior distributions of the predicted param-
eters in our Bayesian inference pipeline. Because the DM
and stellar parameters are correlated, we uniformly sample
r⋆ from [0.2, 1]× rs, and ra from [0.5, 2]× r⋆.

We generate 80,000 training samples, 10,000 validation sam-
ples, and 10,000 test samples. Each sample contains the
3-D positions and 3-D velocities of tracer stars with respect
to the center of a dwarf galaxy with the above parameters.
The number of stars in each galaxy is sampled from a Pois-
son distribution with a mean of 100 stars, which roughly
matches the number of stars typically observed in bright
dwarf galaxies (Simon & Geha, 2007; Mateo et al., 2008;
Walker et al., 2009a;b).

2.2. Data preprocessing and graph construction

We initially pre-process our datasets by adding projection
effect and measurement errors in order to reflect realistic
dwarf galaxy observations. For each sample, we randomly
choose a line-of-sight axis and project the galaxy on the
2-D plane perpendicular to the axis. We then derive the 2-D
projected coordinates (X,Y ) and the line-of-sight velocities
vlos for each star. To study the validity of the method before
the inclusion of large measurement errors, we assume a
Gaussian velocity measurement error of ∆v = 0.1 km/s
and add samples from the noise model to the intrinsic line-of-
sight velocity of each star. We do not assume any positional
uncertainty since the angular position measurement error
for stars in dwarf galaxies is typically negligible.

A natural way to represent the stellar kinematic data is
in the form of a potentially weighted, undirected graph
G = (V, E , A), where V is a set of nodes representing
|V | = Nstars individual stars, E is a set of edges, and A ∈
RNstars×Nstars is an adjacency matrix describing the weights
of connections between vertices. This representation is
well-suited for our purposes because the stars in a dwarf
galaxy have no intrinsic ordering, and it is advantageous to
explicitly encode relationships between stars (e.g., nearby
stars might be expected to have similar intrinsic velocities
due to being in a similar local gravitational environment).

In our analysis, each node represents a star, with the node
features being its error-convolved line-of-sight velocity ṽlos
and the projected radius R =

√
X2 + Y 2. We choose to

use R instead of the full (X,Y ) coordinates in order to
incorporate projective rotational invariance into the graph
representation, which is expected to enhance the simulation-
efficiency of the downstream inference task.

To determine the graph edges E , we use (X,Y ) to calculate
pair-wise distances between all stars. For each star, we con-
nect it to the k-nearest stars including itself (i.e. self-loops).
Since the edges are assumed to be undirected, each star can
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Figure 3. Example corner plots of the posterior DM parameters from Jeans dynamical modeling (left) and our method (right) on two
test galaxies with cored DM profile (red) and cuspy DM profile (blue). Both galaxies have the same central slope ρ0 and scale radius rs.
Similarly to the training dataset, each galaxy has about 100 stars and a line-of-sight velocity error of ∆v = 0.1 km/s. The contour lines
show the 68% and the 95% containment regions. As evidenced, our method provides a stronger constraint on the DM parameters and is
able to distinguish more cleanly between a cored and cuspy profile.

be connected to more than k other stars (including itself).
A higher value of k increases the number of edges, which
provides more neighboring information but also increases
computational and memory costs. After experimenting with
different values of k, we found k = 20 to provide a good
balance between downstream prediction accuracy and com-
putational cost. Finally, we do not include edge weights
in our graph, but note that we have experimented with a
variety of weighting schemes (including attention-based
learned weights (Veličković et al., 2017) as well as weights
exponentially decaying with inter-star distance) and found
them to perform similarly in downstream inference to the
unweighted case. We will explore further variations on
graph construction, including different weighted adjacency
schemes and node features, in future work.

2.3. Neural network architecture and optimization

We train a graph neural network (GNN) gφ : G → RNfeat

in order to extract Nfeat summary features from the con-
structed graph representation x ∈ G of mock dwarf galaxy
stellar kinematic data. Here φ represents the parameters
of the neural network. The feature-extraction network con-
sists of 5 graph-convolutional layers based on convolutions
using a basis of Chebychev polynomials in the spectral do-
main (Defferrard et al., 2016). This is followed by a global
mean pooling layer which aggregates the permutation-
equivariant features into a permutation-invariant representa-
tion, and a fully-connected layer which projects the output

onto a set of Nfeat = 128 summaries gφ(x).

The joint posterior p̂ϕ(θ | gφ(x)) of the 5 parameters of
interest θ characterizing the DM and stellar profiles is mod-
eled using a normalizing flow (Papamakarios et al., 2019;
Rezende & Mohamed, 2015; Papamakarios et al., 2017),
which are a class of flexible generative models that allow
for efficient density estimation as well as sampling. The
flow transformation (with parameters ϕ) is conditioned on
the summary features extracted by the graph neural network
and its negative log-density − log p̂ϕ(θ | gφ(x)) is used as
the training loss.

The GNN and normalizing flow parameters {φ, ϕ} are opti-
mized simultaneously on the 80,000 simulated samples us-
ing the AdamW optimizer (Kingma & Ba, 2014; Loshchilov
& Hutter, 2019) with a learning rate of 5×10−4. At the end
of each epoch, we evaluate the loss on the 10,000 validation
samples and reduce the learning rate by a factor of 10 if
no improvement is seen after a few epochs. We stop the
training process if the validation loss does not improve after
10 epochs. Our model takes about 1 hour to converge on an
NVIDIA Tesla V100 GPU.

3. Results and discussion
We apply our method to the 10,000 test galaxies and sum-
marize our results in Fig. 1. For each galaxy, we condition
the trained flow on features extracted using the GNN and
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draw 10,000 samples from the joint DM and stellar posterior.
Then we compute the marginal medians as the predicted
parameters and sort them into bins based on their true val-
ues. Fig. 1 shows the median (solid black line), middle-68%
(dark gray bands), and middle-95% (light gray bands) con-
tainment regions for each bin of the DM parameters. In
general, our method successfully recovers individual DM
parameters. We note that predictions of the inner slope γ
are slightly biased towards the ends of the prior distribution
(which spans from [−1, 2] for γ) due to edge effects. These
biases are well within the modeled uncertainty and thus
should not affect the overall conclusions of our study.

To test whether our method can separate a cored and (γ = 0)
and a cuspy (γ = 1) DM profile, in Fig. 2 and Fig. 3,
we show the inferred posteriors on two test dwarf galaxies
with the same DM central density, scale radius, and stellar
profile, but with different inner density slopes (γ = 0 and
γ = 1). Fig. 2 shows the posteriors on the recovered density
profile (top row), enclosed mass profile (middle row), and
anisotropy profile (bottom row). The middle-68% and 95%
containment regions are shown as gray bands, and the true
latent profiles are shown with the dashed blue lines. It can
be seen that the method is able to successfully reconstruct
the density, mass, and anisotropy profiles at both small and
large radii.

In Fig. 3, we show the corner plot of the joint and marginal
DM posteriors from Jeans modeling (left panel) and our
method (right panel) for γ = 0 (red) and γ = 1 (blue), with
the middle-68% and 95% containment regions as the con-
tour lines. For Jeans analysis, we apply a similar procedure
to Chang & Necib (2021) and use the dynesty module
(Speagle, 2020) to sample the joint posteriors. As compared
to the Jeans analysis, our method provides a stronger con-
straint on the DM posterior parameters and distinguishes
more cleanly between galaxies with cored and cuspy DM
profiles.

To conclude, we found that our method based on graph neu-
ral networks and simulation-based inference outperforms
established methods which use Jeans modeling in speed as
well as constraining power. The latter is due to the fact that
our method incorporates more information about the phase-
space of bound stars. Additionally, the method simultane-
ously models the stellar light profile and does not require this
to be done in advance as is typical for traditional approaches.
While we used simulations of anisotropic spherical systems
as a proof-of-concept here, in future work we plan to in-
corporate non-equilibrium dynamics using cosmological
simulations of isolated dwarfs as well as satellites of Milky
Way-like systems, which would take into account baryonic
effects like tidal disruption (Garrison-Kimmel et al., 2019).

Software and Data
This research made use of the dynesty (Speagle, 2020),
IPython (Perez & Granger, 2007), Jupyter (Kluyver
et al., 2016), Matplotlib (Hunter, 2007), NumPy (Har-
ris et al., 2020), PyTorch (Paszke et al., 2019), PyTorch
Geometric (Fey & Lenssen, 2019), PyTorch
Lightning (Falcon et al., 2020), and SciPy (Virtanen
et al., 2020) software packages.
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