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Abstract
The astronomy community is experiencing a lack
of benchmark datasets tailored towards machine
learning and computer vision problems. The over-
all goal of this software is to fill this need. We in-
troduce the python library DeepBench, which is
designed to provide a method of producing highly
reproducible datasets at varying levels of complex-
ity, size, and content. The software includes simu-
lation of basic geometric shapes and astronomical
structures, such as stars and elliptical galaxies,
as well as tools to collect and store the dataset
for consumption by a machine learning algorithm.
We also present a trained ResNet-50 model as an
illustration of the expected use of the software as
a benchmarking tool for different architectures’
suitability to scientifically motivated problems.
We envision this tool to be useful in a suite of
contexts at the intersection of astronomy and ma-
chine learning. For example, this could be useful
for those new to machine learning principles and
software, as a way to build their skills and tools
with a toy-model data set that looks like astronom-
ical data. Also, experts can use this tool to build
simple data sets that allow them to check their
models. Finally, the geometric/polygon images
can be used as a highly simplified version of astro-
nomical objects: this could be used for addressing
a spectrum of problems from object classification
to deblending. The GitHub repository containing
the source code for DeepBench can be found
here: https://github.com/deepskies/DeepBench.
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1. Motivation
DeepBench was designed to have three major elements.
First, it is intended to be extremely easy to use, especially for
those new to machine learning and even computing. Second,
it can be used to produce computer vision data sets with
varying levels of complexity to help the diagnose machine
learning model errors – for users of any level of experience
in machine learning. Third, it is intended as a generator of
benchmark data sets

1.1. Beginner-Friendly Software

One of the main motivations of this project was the pro-
duction of a tool to gently introduce new practitioners of
machine learning to techniques for feature engineering and
model tuning commonly encountered in the field, using
datasets that are fast to integrate with out-of-the-box ma-
chine learning frameworks. This is accomplished by includ-
ing methods to catalog all produced images and provide a
description of all generated objects included in the images.

To avoid unnecessary complexity in execution and use of the
program, the software was designed with the philosophy of
being easy enough for someone with minimal programming
experience to use. DeepBench is packaged with multiple
examples of usage and different types of configuration tem-
plates for producing default datasets, along with making
available multiple modes of execution – either as a package
used in conjunction with jupyter-style notebooks or through
command line interfaces.

The range of objects also lends itself toward flexibility for be-
ginners – from datasets that are “easy” to learn (such as bal-
anced binary classification of distinct classes) to more com-
plicated challenges like regression or simulation: this simul-
taneously makes DeepBench useful as a learning/teaching
tool, and as a vehicle to help climb a ladder of complexity
for experts in testing their methods.

1.2. Diagnosis for Experiments and Models

The software is also intended for use as a diagnosis tool to
help users identify model weaknesses and assess issues dur-
ing machine learning model training.DeepBench makes
it easy to incrementally increase and decrease the data ob-
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ject complexity (e.g., remove noise, decrease the number of
classes, increase the class balance), which is helpful when
seeking weak points in a machine learning model architec-
ture or training schedule.

More explicitly, in the case of a task like gravitational lens-
ing classification, it would be possible to move from a
dataset containing real images, to a simulated dataset con-
taining a similar distribution of objects as the training set,
and incrementally remove elements such as noise from sim-
ulated images.

1.3. Transfer Learning and Network Benchmarking

The astronomy community is long familiar with short-term
data challenges that use benchmark data sets – e.g. the
GREAT challenges for weak gravitational lensing (Bridle
et al., 2009), the finding challenges for strong lensing (Met-
calf et al., 2019), and the supernova classification PLAS-
TICC challenge (Hložek et al., 2020). However, there do not
yet exist benchmark data sets that permit persistent, long-
term model comparisons and testings that are particularly
relevant for astronomy and physics.

Most persistent benchmark datasets for computer vision –
e.g., MNIST (Deng, 2012), CIFAR (Krizhevsky et al.) –
are not designed with the intent of developing models for
astronomy research, as their focus tends to be replicating
human vision and identification techniques. This leads to 1)
a lack of accuracy baselines for networks that are applicable
for astronomy problems, and 2) a lack of pre-trained weights
for large architectures that can be used in transfer and semi-
supervised learning problems.

DeepBench aims to help fill this need by providing the
capability to generate simulated datasets that contain dis-
tributions of objects that more closely match the type of
datasets used in more realistic studies: studies relying on
pre-built architectures need not retrain all weights from
scratch. Training techniques that use transfer learning often
have drastically decreased training run times, as well as
provide out-of-the-box weights that can perform on related
astronomy problems.

2. Related Work
Benchmarking and dataset generation is heavily used in the
field of Machine Learning. Works that are most closely
related to the work described here include SHAPES (Wu
et al., 2016) for its use of collections of geometric objects
as a benchmark with varying levels of complexity, and
deeplenstronomy (Morgan et al., 2021) for its packag-
ing of the strong lensing framework lenstronomy (Bri-
dle et al., 2009) into tools with ease of use and reproducibil-
ity included in their design.

3. Methods

Figure 1. The DeepBench workflow. Dataset parameters (type of
objects in each image, qualities of each object), are passed by the
Catalogue module (1) by the user. These are used the Image mod-
ule (2) to call and construct each Object (3) that will be included in
the final image. This module also combines called objects into one
image, and ”image level” noise is applied, choosing from either
Gaussian or Poisson distributions. The parameters of each object
within the image are saved by Catalogue (1), along with the image
itself.

3.1. Modules

3.1.1. GEOMETRIC OBJECTS

Geometric objects are all generated by using the
matplotlib library (Hunter, 2007), and are able to ei-
ther be left as solid two-dimensional shapes or of an outline
with a varying thickness. Shapes include rectangles, n-
sided regular polygons, arcs, straight lines, ellipses, and
circles. Shapes are limited to two-color rendering, such that
all shapes are composed of 0 and 1 values within an array.
They can be combined in multiple ways using the ”Image”
module to produce composite images with both different
geometric objects and astronomical objects.
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3.1.2. ASTRONOMICAL OBJECTS

Astronomical objects offer simplified renderings of common
profiles found in astronomical data sets. These objects can
be either 1D or 2D models, depending on the object type.
They can also have parameters that are either randomized
or manually specified by the user via a configuration file.

One-Dimensional Models The N-Body object is currently
the sole one-dimensional model available in the alpha re-
lease. The N-Body model is output as a set of NumPy
(Harris et al., 2020) arrays containing coordinates represent-
ing the path of the points produced, along with the kinetic
and potential energy produced over the specified duration.

Two-Dimensional Models Two-dimensional models are
representations of astronomical objects commonly found
in data sets used for galaxy morphology classification. All
objects also come with the option to append various levels
of Gaussian and Poisson noise, and are output as NumPy
arrays. The following are the objects currently available via
alpha release.

Star The Star object is created using the Moffat distri-
bution provided by the AstroPy (Astropy Collaboration
et al., 2018) modeling library.

Elliptical Galaxy The (Elliptical) Galaxy object is cre-
ated using the Sérsic profile provided by the AstroPy
modelling library.

Spiral Galaxy The profile of the Spiral Galaxy object
is created by simulating the function used to produce a
logarithmic spiral (Ringermacher & Mead, 2009), along
with reproducing the following relationship:

r(ϕ) = A/log[B ∗ tan(ϕ/2N)] (1)

Where A defines the scale of the galaxy, B controls spiral
pitch, N is the ’winding number’, with defines the tightness
of the arms, and ϕ is the angle of parallelism.

3.1.3. IMAGE

The image module allows users to concatenate various shape
or astronomical objects within a matplotlib meshgrid
object in order to simulate the profiles and shape distri-
butions commonly seen in images used in more complex
astronomical data sets.

Three distinct image types are available - sky images, lens-
ing images, and geometric images. Sky images are com-
posed of any combination of user-specified galaxy and star
objects, while lensing images are randomized combinations
of arc and star objects. Lastly, geometric images are can-

vased assortments of any of the individual geometric shape
objects available.

3.1.4. CATALOGUE

The Catalogue module allows users to specify the size,
contents, and output directory of a data set composed of
DeepBench’s available image types or individual object
images.

Catalogues can either be entirely randomized, with parame-
ters of the included image being randomly chosen, or have
parameters specified by the user at various levels of granu-
larity.

The only required argument in the creation of Catalogue
objects are the output directory and image type. Within
the Catalogue module also exists a Collection class, which
concatenates various catalogues of varying image types into
one data set.

Catalogues and collections can be output in the formats
.jpeg, .npy, or .h5.

4. Example Output
4.1. Geometric Shape Image

With the exception of the image dimensions, geometric im-
ages are also provided randomized default values for each
of the available parameters in every available shape. The
default image dimensions are defined as 256-by-256 pix-
els. Like astronomical objects, geometric shapes can be
produced as individual objects or as a plot of concatenated
shapes. Although each geometric object has distinct pa-
rameters necessary for the creation of a shape, the most
commonly held configurable variables for each shape are
the center, radius, and angle. See Figure 2.

4.2. Astronomical Object Images

All parameters of the astronomical objects are randomized at
default with the exception of the image dimensions variable,
which is set to a default value of 28-by-28 pixels. The noise
levels for the point-spread and Gaussian noise can also be
specified for every astronomical image type.

Elliptical Galaxy Image Configurable parameters for the
Elliptical Galaxy object include the following: image di-
mensions, center of the object, amplitude, and radius, along
with the ellipticity and theta value (see Figure 6).

Spiral Galaxy Image Configurable parameters to pro-
duce the Spiral Galaxy object include the following: image
dimensions, center of the object, elliptic core size, number
of arms, radius, and amplitude (see Figure 3).
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Star Image Configurable parameters for Stars include:
image dimensions, noise, radius, center, and amplitude (see
Figure 4).

Lensing Image Configurable parameters for the Lensing
object are composed of the available variables used in each
of its separate objects, namely the arc geometric object and
star astronomical object (see Figure 5).

Figure 2. A completely randomized collection of geometric shapes
concatenated onto a canvas object. Each shape is colored differ-
ently for illustrative purposes.

Figure 3. A spiral galaxy with
the number of arms defined as
four and the Gaussian noise
set to 0.0.

Figure 4. A star with a noise
level defined as 0.50. All
other parameters are random-
ized by default.

5. Executed Benchmarks
In the interest of providing executed benchmarks, multiple
ResNet-50 models (He et al., 2015) were trained for five
different classification tasks. The ResNet-50 architecture
was selected for both its high performance for image clas-
sification tasks, overall popularity, and existing benchmark
runs on many other computer vision datasets.

The architectures were trained using the pyTorch
framework (Paszke et al., 2019), using three different

Figure 5. A lensing image
with the arc’s endpoint de-
fined as 150.0 degrees.

Figure 6. An elliptical galaxy
image using totally random-
ized default parameters.

DeepBench variants: (1) a dataset containing ”Sky” im-
ages, containing multiple structures per image; (2) a dataset
containing geometric shapes, with multiple shapes per im-
age; (3) individual astronomical structures, with one star,
galaxy, or spiral galaxy per image. Each dataset contained
10,000 total images, split 60/20/20 between training, valida-
tion, and testing distributions, respectively.

All models were trained with a batch size of 64, learning
rate of 0.524, and weight decay rate of 0.00125.

Table 1. Summary of results for the benchmark trained ResNet
models.

Dataset Accuracy

Sky Images 95.7
Geometric Images 97.3
Astronomy Objects 97.1

For the transfer learning trial, a ResNet-50 model without
prior weights was trained on the dataset of randomly pro-
duced sky images used in the previous classification task,
while another model was produced without any defined
weights. The comparison dataset used for the transfer learn-
ing was composed of a collection of 5000 images from the
GalaxyZoo2 (Willett et al., 2013) dataset. The included
class labels were cigar-shaped smooth, ring-shaped, merg-
ing, and spiral, with each class having approximately equal
representation. All layers of the model trained on the Deep-
Bench dataset, with the exception of the input and output
layers, were then transferred to a separate model used to
classify the GalaxyZoo2 images. The model without pre-
defined weights was solely trained on GalaxyZoo2 images.

The transfer-learned model was able to reach the accuracy
achieved by the non-transfer learning model after approxi-
mately 10,000 iterations, as seen in Figure 7.



DeepBench: Simulating benchmark datasets for astronomical analysis

Figure 7. Summary of the training accuracy for the ab initio data
model (blue, solid) and the transfer-learned model (orange, dotted)
for the transfer learning trial.

Table 2 presents the accuracies of each approach after
20,000 iterations. Although training did not reach con-
vergence, the significant difference in produced accuracy
becomes clear early on.

Table 2. Summary of results producing during the transfer-learning
trial for 16,000 iterations.

Approach Accuracy

Transfer-Learned Model 73.1
Ab Initio Model 69.3

6. Conclusion and Outlook
DeepBench fulfills the demand for simple, seamlessly-
integrated benchmark datasets for common astronomy-
focused machine learning tasks. Due to its focus, it lends
itself towards being a base for transfer-learning problems
in so that higher accuracies can be reached in shorter
training times. We envision pre-trained models based on
DeepBench being used across a wide range of experiments
and projects. We hope that using this method of benchmark-
ing allows for easier communication and comparison of
results, and encouraging collaboration between different
research projects working on similar problems.

By designing a system that is simultaneously config-
urable yet undemanding, DeepBench’s straight-forward
command-line tool allows users to quickly produce bench-
marks personalized to fit their particular testing needs. Inter-
faces are provided for objects that range in complexity from
simple geometric shapes to more complex simulations of
common astronomical profiles, with no defined limit to the
amount of data that can be produced. The straightforward
nature also encourages new practitioners, with simple cases
for classification and regression available.

With the beta release of DeepBench, more attention will
be paid to expanding the number of objects available in the
one- and three-dimensional modelling modules.
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Davies, A., Decenciè re, E., Flamary, R., Gavazzi, R.,
Geiger, M., Hartley, P., Huertas-Company, M., Jackson,
N., Jacobs, C., Jullo, E., Kneib, J.-P., Koopmans, L. V. E.,
Lanusse, F., Li, C.-L., Ma, Q., Makler, M., Li, N., Light-
man, M., Petrillo, C. E., Serjeant, S., Schäfer, C., Sonnen-
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