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1. Introduction
The forthcoming generation of astronomical surveys will
peer deeper into space, revealing many more astronomical
light sources than their predecessors. Because of the greater
density of light sources in these surveys’ images, many more
light sources will visually overlap. Visually overlapping
light sources, called “blends”, are expected to make up 62%
of the galaxies imaged by the upcoming Legacy Survey of
Space and Time (Sanchez et al., 2021). Blends are challeng-
ing for traditional (non-probabilistic) astronomical image
processing pipelines because they introduce ambiguity into
the interpretation of the image data.

We present a new probabilistic method for detecting, de-
blending, and cataloging astronomical objects called the
Bayesian Light Source Separator (BLISS). BLISS is based
on deep generative models, which embed neural networks
within a Bayesian model and use deep learning to facilitate
posterior inference. BLISS generalizes StarNet (Liu et al.,
2021), which can only analyze images of starfields.

In the BLISS statistical model (Section 2), the latent space
is interpretable: one random variable encodes the num-
ber of stars and galaxies imaged, a random vector encodes
the locations and fluxes of these astronomical objects, and
another random vector encodes the galaxy morphologies.
Conditional on these random variables, the data (i.e., the
pixel intensities in a collection of astronomical images) are
modeled as Poisson or Gaussian. Owing to this Bayesian
formulation, BLISS requires no special logic to analyze
blended galaxies.

For posterior inference (Section 3), BLISS uses a new form
of variational inference based on stochastic optimization,
deep neural networks, and the forward Kullback-Leibler
divergence. This new methodology is known as “Forward
Amortized Variational Inference” (FAVI) (Ambrogioni et al.,
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2019). In FAVI, a deep encoder network is trained on data
simulated according to the generative model to solve the in-
verse problem: predicting the latent variables that generated
a particular synthetic astronomical image. FAVI has scaling
advantages over Markov chain Monte Carlo and achieves
improved fidelity of the posterior approximation compared
with traditional variational inference in our application.

Algorithmically, inferences in BLISS are produced by a
sequence of three deep convolutional encoder networks,
each conditioned on the output of the earlier network (Sec-
tion 3.1). The first encoder performs detection, estimating
the number of light sources in particular regions. Condi-
tional on samples from the first encoder, the second en-
coder probabilistically classifies each sampled source as
a star or a galaxy. Conditional on sampling a galaxy by
the second encoder, a third encoder network estimates the
shape/morphology. No restrictive assumptions are made
about the factorization of the posterior approximation, as
is common in more traditional approaches to variational
inference.

The BLISS inference routine is fast, requiring a single for-
ward pass of the encoder networks on a GPU once the
encoder networks are trained. BLISS can perform fully
Bayesian inference on megapixel images in seconds, and
produces more accurate catalogs than traditional methods
do (Section 4). BLISS is highly extensible, and has the
potential to directly answer downstream scientific questions
in addition to producing probabilistic catalogs (Section 5).

2. The Statistical Model
Our generative model consists of two parts: the prior dis-
tribution over all possible astronomical catalogs and the
likelihood of an image given a particular catalog.

2.1. Prior

Let Z be the collection of all possible catalogs, and let z ∈
Z be a particular realization. Our prior over Z is a marked
spatial Poisson process. Light sources arrive according
to a homogeneous Poisson process with rate µ, which is
set based on prior knowledge. In other words, for a given
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image of size H×W , the number of sources S in this image
follows the Poisson distribution:

S ∼ Poisson(µHW ). (1)

The locations of each of the sources s = 1, . . . , S are uni-
form in the image:

ℓs | S ∼ Uniform([0, H]× [0,W ]). (2)

Each source s is either a star or galaxy:

as | S ∼ Bernoulli(ξ), (3)

where ξ is the proportion of imaged sources that are ex-
pected to be stars according to prior knowledge.

Given the point spread function (PSF) at a particular location
in the image, a star’s appearance is fully characterized by its
flux fs, which follows a truncated power law distribution:

fs,1 | S, as = 1 ∼ Pareto(fmin, α). (4)

Unlike stars, the shape of galaxies can vary greatly within
an image. To flexibly model this variety of shapes, we use
a low-dimensional embedding following an uninformative
prior to encode a galaxy’s flux and shape:

vs | S, as = 0 ∼ Normal(0, ID×D), (5)

where D is a user-defined embedding dimension.

2.2. Likelihood

Let zs = {ℓs, as, fs, vs} denote the latent variables describ-
ing light source s. Let z = {S, {zs}Ss=1} be a catalog
sampled from the prior. Radiation from the light sources in
catalog z is recorded as the observed photoelectron count
xn at each pixel n of the astronomical image. The photo-
electron count xn follows a Poisson distribution with rate
λn(z) + γn, where λn(z) is a deterministic function of the
catalog and γn is background intensity. In practice, since the
number of arrivals is large, we use a normal approximation
to the Poisson distribution:

xn | z ∼ Normal(λn(z) + γn, λn(z) + γn). (6)

The contribution of light source s to the intensity of pixel n,
denoted λn(zs), depends on whether source s is a star or a
galaxy. If source s is a star, the PSF and flux give its intensity
at pixel n. If source s is a galaxy, then its contribution to
pixel n comes from a decoder neural network gθ(zs), which
is trained according to the procedure in Section 3.2.

3. Variational Inference
We infer the posterior distribution of the catalog, p(z |
x), by using variational inference (VI), which allows for

computationally efficient approximate inference (Blei et al.,
2017; Zhang et al., 2018). Rather than drawing samples
like MCMC, VI turns the problem of posterior inference
into a numerical optimization problem. From a family of
tractable distributions qϕ, parameterized by ϕ ∈ Φ, VI aims
to find the approximating distribution qϕ∗ that minimizes a
divergence metric to the posterior distribution.

Our generative model (Section 2) is transdimensional: the
number of light sources is not fixed within a given image.
Transdimensional inference can be challenging. To allow
for a variable number of light sources while maintaining
tractability, we divide the image into 4× 4-pixel subimages,
which we call “tiles.”. For each tile t = 1, . . . , T , let zt
represent the subset of the cataloged light sources with cen-
ters in tile t. Our variational distribution factorizes across
tiles and limits the number of sources centered in each tile
St. We further factorize the distribution for each tile into
factors for each source indexed by s′ = 1, . . . , St. These
factors approximate the posterior densities of the location
ℓt,s′ , source type at,s′ , star flux ft,s′ and galaxy shape vt,s′ .

3.1. Amortization and model architecture

With traditional VI, fitting a variational distribution would
require running a computationally intensive iterative op-
timization procedure once for each tile. Instead, BLISS
utilizes amortized variational inference (Kingma & Welling,
2014; Zhang et al., 2018). For each tile t = 1, . . . , T , we
let xt denote the corresponding padded tile: the 52 × 52-
pixel cropped sub-image centered around the 4 × 4-pixel
tile with index t. In our amortized inference procedure, an
encoder neural network is trained to transform each padded
tile xt into distributional parameters zt for that tile. After
a training phase, amortized variational inference enables
fast inference on unseen data; the average cost of training
per-data point is reduced as more data is processed. Also,
amortized inference allows for stochastic optimization with
subsamples of the image data; during each optimization
iteration, it is far more efficient to load a small part of the
image and to compute gradients with respect to it than do
so for the entire image.

The BLISS encoder consists of a sequence of neural net-
works that operate on padded tiles (Figure 1). The padded
tile xt is first fed to the detection encoder, which infers the
number of sources in each tile St and the locations of each
source ℓt,s′ for s′ = 1, . . . , St. After sampling locations
for each source, each padded tile is centered and fed to
the classification encoder, which infers whether any light
source in the corresponding tile is a star or a galaxy. Fi-
nally, fluxes ft,s′ are sampled for sources that are stars, and
galaxy morphology parameters are sampled from the galaxy
encoder.
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Figure 1. The BLISS encoder sequence.

3.2. Training procedure

BLISS has two training stages. First, we learn a tractable
generative model of single galaxy shapes by fitting a vari-
ational autoencoder (VAE) (Kingma & Welling, 2014) to
simulations from GalSim (Rowe et al., 2015). Second, we
train each of the aforementioned encoder networks (i.e., the
location encoder, the classification encoder, and the galaxy
encoder) on simulated data sampled from the generative
model.

Galaxy VAE We use a variational autoencoder to learn a
low-dimensional representation v ∈ RD of centered galax-
ies. To generate galaxies, we place a prior on the flux,
ellipticity, and size of the bulge and disk components as
well as the angle of rotation. These parameters are rendered
into single, centered galaxies using the GalSim simulation
package. Separate encoder gϕ and decoder fθ networks are
trained to minimize the ELBO. The learned decoder net-
work gθ is subsequently included as a component of our
overall generative model.

Encoder networks The location and classification en-
coders are trained using forward amortized variational in-
ference (FAVI) (Ambrogioni et al., 2019). FAVI uses the
expected forward KL divergence as its training objective.
This has several advantages. First, it leads to a better opti-

mization path than the traditional VI objective, and it lets us
avoid using the high-variance REINFORCE gradient esti-
mator (Liu et al., 2021). Second, it correctly estimates of the
marginal posterior distribution of latent variables, implic-
itly integrating over nuisance parameters such as the latent
properties of light sources below the detection threshold
(Ambrogioni et al., 2019).

4. Experiments
To illustrate the performance of BLISS, we run the trained
encoder network on a 1489× 2048 frame (run 94, camcol
1, field 12) from stripe 82 of the Sloan Digital Sky Survey
(SDSS). After training for 5.5 hours with synthetic data (a
one-time upfront training cost), BLISS inferred a probabilis-
tic catalog for this SDSS frame in just 10.5 seconds.

Although BLISS is probabilistic and outputs a distribution
of catalogs, we use the mode of the variational distribution
as a point estimate for comparison to non-probabilistic cat-
alogs. We let the coadd catalog from SDSS (henceforth,
COADD) for this frame serve as a proxy for ground truth.
COADD based its estimates on all the filter bands of nu-
merous frames, whereas BLISS used just the r-band of one
frame; we expected COADD to serve as reasonable, though
imperfect, proxy for the ground truth in our benchmarks.
This approach to benchmarking was developed in Regier
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BLISS PHOTO

Mag Ground Truth TP FP TP FP

17 - 18 31 31 1 28 0
18 - 19 39 38 2 37 2
19 - 20 64 59 9 55 12
20 - 21 117 111 20 104 20
21 - 22 232 187 45 185 44
22 - 23 386 126 91 117 47
Overall 889 571 175 545 130

Table 1. Catalog comparison of BLISS to PHOTO, treating
COADD as ground truth. Each row is a particular bin of galaxies
based on their magnitude according to COADD. “TP” refers to
true positives and “FP” refers to false positives.

et al. (2019), where it is described in great depth. We com-
pare BLISS with PHOTO (Lupton et al., 2005), which uti-
lizes the same SDSS frame as BLISS, but has access to all
five filter bands.

Table 1 compares the detection accuracy of BLISS and
PHOTO. To qualify as a match, a source must be within one
pixel of the other in L∞ distance. Overall, BLISS detects
571 out of the 889 total sources in the SDSS frame. The
vast majority of sources that BLISS did not find were faint
(magnitude ≥ 21), making them harder to detect. Of the 7
sources greater than 20 magnitude that were not matched
by BLISS, 4 sources were missed due to errors in COADD,
2 sources had unusual shapes, and 1 source was in a par-
ticularly difficult blend with many other sources. This was
determined by manually checking discrepancies with the
more recent DECaLS survey (Dey et al., 2019). Similarly,
of the 12 sources that BLISS detected that were unmatched
in COADD, 10 were due to errors in COADD, and 2 were
mistakes by BLISS. These latter two mistakes were both
cases where a source’s center straddled adjacent tiles, lead-
ing to a prediction in both. These types of errors are quite
rare, and could be fixed by a post-processing step that condi-
tions on neighboring tiles, or by a more complex variational
approximation.

Table 2 compares the source-type classification accuracy
of BLISS and PHOTO. Overall, BLISS correctly classifies
most sources. When sources are dimmer and more ambigu-
ous, BLISS sensibly defers to the prior, labeling most of
them as galaxies. In SDSS images without much blending,
BLISS identifies more sources than PHOTO, despite having
less access to less data (only one of five bands), with the
advantage of producing calibrated uncertainties for every
prediction. While BLISS appears to produce more “false
positives” than PHOTO, these all arise in the dimmest mag-
nitude bin 22 − 23 where more ambiguity is present. In
this scenario, mistakes in COADD (our imperfect proxy

BLISS PHOTO

Mag Tot Gal Star Tot Gal Star

17 - 18 0.97 1.00 0.96 0.96 1.00 0.95
18 - 19 1.00 1.00 1.00 1.00 1.00 1.00
19 - 20 0.98 1.00 0.96 1.00 1.00 1.00
20 - 21 0.94 0.91 0.98 0.90 0.86 0.98
21 - 22 0.81 0.86 0.73 0.83 0.81 0.87
22 - 23 0.63 0.74 0.50 0.66 0.70 0.63
Overall 0.84 0.87 0.80 0.85 0.84 0.86

Table 2. Accuracy of classifications made by BLISS and PHOTO.

Figure 2. Images of BLISS detections near the 50% detection
threshold in SDSS images (left) and their reconstructions (right).
Example (a) was detected in COADD. (b) was not present in
COADD but found in the DECaLS catalog.

of ground truth) likely favor PHOTO as both COADD and
PHOTO are both produced by the same software pipeline.
We found several cases where BLISS detected a dim object
that was not present in COADD, but confirmed its exis-
tence in the DECaLS survey. Figure 2b is one example
of a COADD mistake. More importantly, BLISS correctly
identifies the ambiguity in these situations, as most of the
“false positives” BLISS finds have probabilities close to the
detection threshold. Setting this detection threshold allows
practitioners to decide the level of certainty they require in
sources for use in downstream tasks.

5. Conclusion
BLISS is a fundamentally different approach to interpret-
ing astronomical images. It uses deep learning to enable
scalable and accurate Bayesian inference. BLISS performs
well at detecting and deblending light sources in SDSS im-
ages. BLISS is also highly extensible in that its inference
routine requires little modification if the underlying statisti-
cal model is revised or extended. We encourage interested
researchers to try our software, which is available from
https://github.com/prob-ml/bliss.

https://github.com/prob-ml/bliss
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Zhang, C., Bütepage, J., Kjellström, H., and Mandt, S. Ad-
vances in variational inference. IEEE transactions on
pattern analysis and machine intelligence, 41(8):2008–
2026, 2018.

https://www.astro.princeton.edu/~rhl/photo-lite.pdf
https://www.astro.princeton.edu/~rhl/photo-lite.pdf

