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Abstract
Measuring the structural parameters (size, total
brightness, light concentration, etc.) of galaxies
is a significant first step towards a quantitative
description of different galaxy populations. In
this work, we demonstrate that a Bayesian Neural
Network (BNN) can be used for the inference,
with uncertainty quantification, of such morpho-
logical parameters from simulated low-surface-
brightness galaxy images. Compared to tradi-
tional profile-fitting methods, we show that the
uncertainties obtained using BNNs are compara-
ble in magnitude, well-calibrated, and the point
estimates of the parameters are closer to the true
values. Our method is also significantly faster,
which is very important with the advent of the
era of large galaxy surveys and big data in astro-
physics.

1. Introduction
Despite their morphological diversity and complexity, the
approximate light distribution of galaxies can be well-
described by analytic fitting functions with a limited number
of free parameters, such as their orientation, size (radius),
light concentration, total brightness, etc. Measurements
of these parameters allow for a quantitative comparison of
different galaxy populations and the derivation of empirical
scaling relations (e.g., Courteau et al., 2007), which in turns
facilitates the testing of galaxy formation models.

Traditionally, these parameters are measured using galaxy
profile fitting software (two widely used options being
GALFIT; Peng et al. (2002) and Imfit; Erwin (2015))
that performs a χ2 minimization between the chosen ana-
lytic model and a given galaxy image, to derive the best-fit
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parameters. Despite their success, these codes have their
limitations, too: they are not optimized to fit a large number
of galaxies quickly, and they usually require some man-
ual intervention (for example, the selection of good initial
model parameters). The low speed is an even more signifi-
cant problem if one wants to obtain accurate estimates of the
uncertainties associated with those measurements, for exam-
ple via bootstrap resampling, or by using a Markov-Chain
Monte Carlo (MCMC) approach to sample the parameter
posterior distribution.

Large galaxy surveys, such as the Dark Energy Survey
(DES)1 and the upcoming Legacy Survey of Space and
Time (LSST)2 on the Vera C. Rubin Observatory, observe
hundreds of millions (the former) to tens of billions (the
latter) of galaxies. With the advent of these surveys, fast, au-
tomated, and reliable methods for measuring the structural
parameters of galaxies are needed. Deep learning methods
are well-suited to tackle this problem since, once trained,
they are able to make predictions on new, unseen, examples
very quickly.

Indeed, several works (e.g., Tuccillo et al., 2018; Aragon-
Calvo & Carvajal, 2020; Li et al., 2022) have demonstrated
that Convolutional Neural Networks (CNNs), trained on
simulated galaxy images are significantly faster, and almost
as accurate as the standard profile fitting methods in pre-
dicting galaxy parameters. However, those works used stan-
dard, deterministic, neural networks, that output single-point
estimates and thus are unable to quantify the uncertainty
associated with their predictions.

A rigorous uncertainty quantification is imperative for stud-
ies of challenging, low signal-to-noise objects, such as low-
surface-brightness galaxies (LSBGs). LSBGs, defined as
galaxies with a central brightness at least a magnitude fainter
than that of the ambient dark sky, are challenging to observe
and galaxy surveys have only recently started to produce
large LSBG catalogs (Greco et al., 2018; Tanoglidis et al.,
2021; Zaritsky et al., 2022), althought they are expected
to dominate the galaxy population. LSBGs are a target of
future surveys, in the quest of understanding the galaxy

1https://www.darkenergysurvey.org/
2https://https://www.lsst.org/
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formation process in a relatively unexplored regime.

In this work, we explore the use of Bayesien Neural Net-
works (BNNs; e.g., Valentin Jospin et al., 2020) for the prob-
lem of LSBG structural parameter estimation with simul-
taneous uncertainty quantification. BNNs output posterior
probability distributions instead of point estimates for their
predictions, and thus they naturally offer a way to quantify
the uncertainties associated with neural network predictions.
Specifically, we use a simulated dataset of DES-like LSBGs,
to train, validate, and test a convolutional BNN model and
compare the speed and accuracy of its predictions with those
obtained using pyImfit3, for a single-component Sérsic
light-profile model.

Our code and simulated data related to this work are
available at: https://github.com/dtanoglidis/
BNN_LSBGs_ICML.

2. Simulated Data
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Figure 1. Examples of simulated LSBG images. The inset text
refers to the effective radius, re, (top) and the surface brightness,
Ie (bottom).

We use PyImfit to create a simulated dataset of 170,000
LSBG images. Each image has dimensions 64× 64 pixels,
and it has two components: a uniform background I(x, y) =
Isky, and a Sérsic function (Sérsic, 1963) that describes the
surface-brightness profile of the galaxies:

Igal(r) = Ie exp

{
−bn

[(
r

re

)1/n

− 1

]}
, (1)

3pyImfit is a Python wrapper around Imfit.

where r = (x2 + y2/q2)1/2, (x, y) are the coordinates with
origin at the center of the image, and q is the axis ratio.
The axis ratio is connected to the ellipticity as q = 1 − ϵ.
The other free parameters of the model are: the effective
half-light radius, re, the surface brightness at the effective
radius, Ie, the Sérsic index, n, that controls the shape of
the light distribution, and the position angle that defines
the orientation of the galaxy profile. As for the value of
bn (not a free parameter of the model), pyImfit uses the
approximation by Ciotti & Bertin (1999).

We want our simulated images to resemble real LSBG im-
ages. For that reason we sample parameters uniformly, from
a range that roughly corresponds to the bulk of the LSBGs
discovered by DES, as described in Tanoglidis et al. (2021):

• Position angle, PA ∈ [0, 180] degrees,
• Ellipticity, ϵ ∈ [0.05, 0.7],
• Sérsic index, n ∈ [0.5, 1.5],
• Surface brightness, Ie ∈ [24.3, 25.5] mag/arcsec2,
• Effective radius, re ∈ [2.5, 6.0] arcsec.

Furthermore, we assume a pixel to angular scale conversion
1 pix = 0.263 arcsec (as in DES), and background sky sur-
face brightness Isky = 22.23 mag/arcsec2 (Neilsen et al.,
2016). At each pixel we randomly assign a number of pho-
tons (counts) drawn from a Poisson distribution with mean
the one predicted from the total surface brightness model
Itot = Igal + Isky. In Fig. 1 we present a small subset of the
simulated galaxy images.

3. Model
3.1. Bayesian Neural Networks (BNNs)

Standard neural networks, once trained, output a single
point estimate prediction every time the same example is
presented to the network. Thus, deterministic neural net-
works are unable to capture uncertainties in their predictions.
In BNNs, the single weights are being replaced by appropri-
ate probability distributions, that can be subsequently used
to provide a measure of how (un)certain a model is in its
predictions.

Given a training dataset, D = (x,y), training a BNN con-
sists of finding the posterior distribution of the weights,
p(w|D). The exact evaluation of this posterior distribu-
tion is computationally intractable, since it requires multi-
dimensional integration over the weight values. One ap-
proach (variational inference; VI) is to approximate the true
posterior with a distribution q(w|θ) of a known form (e.g.,
a Gaussian), with free parameters θ to be learned. The goal
is to select the parameters to minimize the difference be-
tween the true and approximate posteriors. It can be shown
that this is equivalent to minimizing the (negative) evidence

https://github.com/dtanoglidis/BNN_LSBGs_ICML
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lower bound (ELBO) loss function (e.g., Blundell et al.,
2015):

L(D, θ) = Eq(w|θ) [log q(w|θ)− log p(w)p(D|w)] . (2)

Once trained, random weights can be drawn from the ap-
proximate posterior q(w|θ), and the network can give pre-
dictions on new examples presented to it.

3.2. Implementation and Training

Our BNN architecture consists of five (probabilistic) 2D
convolutional layers, each one followed by a Max Pooling
layer, and a (probabilistic) dense layer following the con-
volutional part. The model output is a multivariate (n = 5
dimensions, equal to the five free parameters of the Serśic
model described in Sec. 2) Gaussian, with full covariance.
For the interested reader, we present a schematic overview
and more details about the architecture in Appendix A.

We implement our network using the Keras and
Tensorflow Probability (TFP) Python libraries.
Before training, we randomly split the full simulated dataset
to a training (150k), a validation (10k), and a test (10k)
set. We perform training with a learning rate η = 0.2
(Adadelta optimizer), for 150 epochs, using a batch size
of 64. During training we observed no signs of overfit-
ting. We utilized the 25 GB high-RAM Nvidia P100 GPUs
available through the Google Colab Pro. The training took
approximately three hours to complete.

4. Results
4.1. Parameter posteriors

In Fig. 2 we present the predicted posterior distributions for
the five parameters of the Sérsic model, described in Sec.
2, for a simulated galaxy at the bright end of the surface
brightness distribution (Ie = 24.4 mag/arcsec2, panel (a)),
and one at the faint end (Ie = 25.3 mag/arcsec2, panel (b)).
We present the predictions of the BNN model (red contours)
and those from the pyImfit model, using two different
estimation methods: bootstrap resampling (green contours),
and Markov chain Monte Carlo (MCMC; blue contours).

To get the BNN posteriors, we stack together the output
distributions from 400 forward passes (predictions) of the
model, for each one of the LSBG images. We see that the
constraints on the parameters are tighter (as in the case of
the brighter LSBG) or comparable (as in the case of the
fainter LSBG) to those obtained using pyImfit. Although
we present only two examples here, we have confirmed that
this is true for a larger number of randomly selected LSBG
images.

In terms of speed, obtaining the posterior distribution for
each one of the examples using BNNs was significantly
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Figure 2. Predicted posterior distributions of structural parameters
for an LSBG in the bright end (Ie = 24.4 mag/arcsec2, panel (a)),
and one in the faint end (Ie = 25.3 mag/arcsec2, panel (b)) of the
surface brightness range we consider in this work. The dashed
lines indicate the true parameter values. The plots were created
using ChainConsumer (Hinton, 2016).

faster than running MCMC (∼ 1 minute vs ∼ 6 minutes),
and comparable in time to the bootstrap method. The real
gain in time comes when one wants to process a large num-
ber of galaxy images simultaneously; for example, obtaining
full posterior estimates for 1000 LSBGs using BNNs takes
∼ 7 minutes on our machine, while processing the same
number of images using pyImfit and bootstrap resam-
pling would had taken ∼ 16 hours.
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Figure 3. Calibration curve of the BNN posterior for the effective
radius parameter, re. Within the statistical uncertainty, the BNN
curve agrees with the diagonal line that indicates perfect calibra-
tion.

4.2. Calibration

We have showed that BNNs fit Sérsic model parameters
with tighter or similar uncertainties to those produced by
pyImfit. In order to be interpreted as confidence intervals,
we have to demonstrate that a x% interval contains the true
value x% of the time – in other words, that the posterior is
well-calibrated.

To investigate that, we consider the parameter posterior pre-
dictions on 1000 simulated LSBGs drawn from the test set.
Following Wagner-Carena et al. (2021); Park et al. (2021),
we calculate, at different posterior percentile levels, the frac-
tion of LSBGs with true values within the limits of that
percentile interval. For well-calibrated posteriors, those two
quantities (percentile and fraction) should be equal. Here,
we show only the (marginalized) posterior for the effective
radius, re. However, similar results are found for the other
parameters; the interested reader can see those plots in Ap-
pendix B. As we can see in Fig. 3, the posterior produced
by the BNN is statistically consistent with being perfectly
calibrated (the error band was calculated by performing a
bootstrap resampling of the test set used for the calcula-
tions).

4.3. Comparison of point estimates

We have demonstrated that the BNN model outputs well-
calibrated errors, and we have seen examples where we
compared the output parameter posteriors from the BNN
and the pyImfit algorithm. We now compare the point
estimate (mean) prediction from the BNN with the best fit
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Figure 4. Comparison of the effective radius parameter, re, predic-
tions from the BNN model (blue dots) and from pyImfit (red
dots) versus the true values.

parameter output from pyImfit.

In Fig. 4 we plot the true value of the effective radius
parameter (for the same 1000 simulated LSBGs as in the
previous section) vs the predicted one, using both methods.
The point estimates produced by the BNN method tend to be
closer to the true value, as indicated by the higher coefficient
of determination (R2 = 0.83 for BNN vs R2 = 0.54 for
pyImfit), and it performs significantly better for higher
effective radius values. In Appendix B we present similar
plots for the other Sérsic model parameters.

5. Discussion and Future Work
We have used a Bayesian Neural network model to pre-
dict structural parameters of LSBGs in simulated galaxy
images. We compare the posterior parameter predictions
from the BNN method with those from a profile-fitting al-
gorithm (pyImfit) for simulated LSBGs and we show
that the BNN gives comparable or even tighter parameter
constraints.

We furthermore show that the uncertainties estimated using
the BNN method are well calibrated, and that, for a sample
of simulated LSBGs, the BNN gives better point-estimate
parameter predictions (higher coefficient of determinations)
compared to those from pyImfit.

A significant strength of our BNN method is its speed. For
example, it can predict the full posterior distribution of the
five-parameter Sérsic model for 1000 LSBGs images within
∼ 7 minutes (on the machine used here); using pyImfit
and the bootstrap resampling methods to get parameter con-
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straints for the same number of images, would require ∼ 16
hours.

An important next step, which we plan to address in future
work, is to test the performance of our method on real LSBG
images and investigate ways to improve it if necessary (for
example by re-training on real data, as in Tuccillo et al.
(2018)). Indeed, the case presented here, where both training
and testing was done on very simple simulated data, can
be significantly different from real data. However, some
preliminary investigation on applying the model trained here
on real LSBGs has shown promising results.

Other areas of future investigation include testing different
BNN architectures, testing the performance of the model
on data outside of the training range, and a more rigorous
comparison of the performance (parameter constraints and
speed) between BNNs and pyImfit.
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A. BNN Architecture
In Fig. 5 we present a schematic overview of the BNN archi-
tecture used in this work. As we mentioned in the main text,
we used the Keras4 library on a TensorFlow5 backend,
and the Tensorflow Probability6 extension of it,
for the probabilistic layers.

The architecture consists of five probabilistic convolu-
tional layers (convolution2DFlipout, provided by
TensorFlow Probability). The number of filters
and the kernel size used in each layer can be seen in the
figure. Each convolutional layer is followed by a Max
Pooling layer. After flattening we have a dense layer
(DelseFlipout). The output is a multidimensional Gaus-
sian (the five parameters our model tries to learn), with full
covariance that allows to capture the correlations between
the parameters.

4https://keras.io/
5https://www.tensorflow.org/
6https://www.tensorflow.org/probability
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Figure 5. Schematic representation of the BNN architecture used
in this work.
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B. Calibration and Point Estimate Comparison Plots
In Sec. 4.2, we presented the calibration plot for the BNN posterior for the effective radius, re, and the comparison of the
BNN point-estimate predictions with those coming from pyImfit, for the same parameter. We showed that the BNN
errors are well-calibrated, and that the BNN point-estimates are closer to the true value compared to those of the pyImfit
for the effective radius parameter.

The figures presented in this Appendix demonstrate that these conclusions hold for other model parameters, too, with the
notable exception of the position angle (PA). For the PA, the network seems to be confused by the artificial discontinuity
at the 0 to 180 degrees boundary (see Fig. 7d). In future iterations of this work, we plan to remove this discontinuity by
reparameterizing the position angle.
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Figure 6. Calibration curves for the BNN posteriors of the four parameters of the Sérsic model, not presented in the main text. Expect for
the position angle (PA) parameter, which the BNN seems to give slightly underconfident predictions, the calibration curves of the other
parameters indicate perfect calibration, within the statistical uncertainty.
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Figure 7. Comparison of the parameter predictions (point estimates) from the BNN model (blue dots) and pyImfit (red dots) versus the
ground truth values, for the Sérsic model parameters not presented in the main text.


