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Abstract

Upcoming surveys such as the Vera C. Rubin
Observatory Legacy Survey of Space and Time
(LSST) will detect up to 10 million time-varying
sources in the sky every night for ten years. This
information will be transmitted in a continuous
stream to brokers that will select the most promis-
ing events for a variety of science cases using
machine learning algorithms. We study the bene-
fits and challenges of Bayesian Neural Networks
(BNNGs) for this type of classification tasks. BNNs
are found to be accurate classifiers which also
provide additional information: they quantify the
classification uncertainty which can be harnessed
to analyse this upcoming data avalanche more
efficiently.

1. Introduction

We are entering into a new era of big data time-domain
astronomy. Upcoming surveys such as Vera C. Rubin Ob-
servatory Legacy Survey of Space Time (LSST) will de-
tect up to ten million time-domain events every night for
over a decade. LSST will emit an alert stream with time-
domain even data within minutes of observation. The Rubin
Community brokers will then receive that stream in real-
time. Brokers will enrich and filter these alerts to select the
most promising candidates for a variety of science cases.
The selected LSST brokers are ALERCE (Forster et al.,
2021), AMPEL (Nordin et al., 2019), BABAMUL, ANTARES
(Narayan et al., 2018), FINK (Moller et al., 2021), LASAIR
(Smith et al., 2019) and PITT-GOOGLE. Many of these bro-
kers are currently processing the Zwicky Transient Facility
(ZTF) alert stream which is an order of magnitude less than
what is expected from Rubin.

Classification algorithms are a core part of brokers. They
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provide scores that can be used to select candidates for
specific astrophysical phenomena such as supernovae, kilo-
novae, microlensing, AGNs, and many others. In recent
years, a wide variety of classification algorithms have been
developed for time-domain astronomy which have shown
excellent performance in classification tasks (Leoni et al.,
2021; Muthukrishna et al., 2019; Villar et al., 2019; Villar
& et al., 2020; Godines et al., 2019; Ishida et al., 2019)

Bayesian Neural Networks are a promising classification
method that provide classification scores as well as uncer-
tainties that can reflect the model’s confidence in the predic-
tion. BNNs go beyond point estimates and yield a distribu-
tion of classification probabilities. The final prediction is
typically computed as the mean probability of this distribu-
tion. The standard deviation of this distribution is typically
used as an estimation of the prediction uncertainty. The
astronomical community has recently started to use BNNs
for classification tasks (Walmsley et al., 2020; Moller &
de Boissiere, 2019; Moller et al., 2022).

In this work, we use the SUPERNNOVA (SNN) classifica-
tion algorithm (Moller & de Boissiere, 2019) to evaluate
the performance and interpretability of BNNs for the new
Rubin era. Since the Rubin observing strategy is yet to be
defined, we use the Dark Energy Survey (DES) SN fields as
a proxy for Rubin’s Deep Drilling Fields. Our benchmark
task is the classification of type Ia vs non Ia supernovae
light-curves. Supernovae are bright stellar explosions that
fade away within weeks.

We use a simulated dataset for training and evaluation.
These simulations contain realistic DES light-curves from
Type Ia models, peculiar Ia and core-collapse supernovae.
An example of the simulated light-curves can be seen in
Figure 1. More details on these simulations can be found in
(Moller et al., 2022). Additionally, we use real light-curves
of type la supernovae candidates observed by the Zwicky
Transient Facility (ZTF) for evaluation in Section 4.2. These
light-curves where obtained using the Fink broker API'.

1.1. Bayesian Neural Networks (BNNs)

Scientific application of machine learning methods often
require estimating the model’s predictive uncertainty. A
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Figure 1. Simulated DES light-curve and SNN classifications using

three different neural networks: RNN, BNN MC, and BNN BBB.

Top row shows the SN light-curve (normalised flux in band-passes
g, 7,1, z; time in Observer Frame days) and its time of maximum
brightness in a dashed line. Bottom rows shows the classification

scores for each method (SN Ia: maroon, non SN Ia: orange).

The BNN methods provide classification uncertainties (shadowed
regions show 68 per cent and 95 per cent contours).

popular way to do so is to cast NN training under a bayesian
light where the goal is to learn a probability distribution
over possible neural networks. This problem is typically
untractable analytically. In practice, approximate methods,
such as variational inference, are used. A review of BNNs
and their use in astronomy can be found in (Charnock et al.,
2020).

We use two BNN implementations to approximate the pos-

terior distribution of weights: MC dropout MC; Gal &
Ghahramani, 2015) and Bayes by Backprop (BBB; Fortu-
nato et al., 2017). MC provides a Bayesian interpretation of
recurrent dropout when the dropout mask is the same at all
time steps. BBB learns an approximate posterior distribu-
tion of weights using variational inference. Both methods
have been previously implemented and tested on simulations
in SUPERNNOVA (Mdller & de Boissiere, 2019).

For both methods, to obtain the classification probability dis-
tribution, we sample the predictions from our BNN 50 times.
In the following we compute the classification probability,
p; for a given light-curve, x; as:

pi = mfian{pj (Xz)} 1
1=1l:ng
where j € [1,n,] is the index of inference samples, p; (x;) is
the j-th sample of the classification probability distribution
for the light-curve x;.

To evaluate classification uncertainties we compute the
model uncertainty for a given light-curve x; as:

i = std{pj(xi)} 2

i=1l:ing

where std is the sample standard deviation.

2. Calibration for BNNs

Classification probabilities that reflect the real likelihood
of events being correctly assigned to a target are said to be
calibrated. Calibration is extremely important in the Rubin
context to carry out precision cosmology analyses.

We use reliability diagrams (DeGroot & Fienberg, 1983)
to evaluate our model’s calibration in Figure 2. We eval-
uate this calibration with complete light-curves spanning
~ 100—150 days. We find all models to be close to perfectly
calibrated with some excess on the fraction of positives at
low probability in particular for BNN BBB.

3. Early classification accuracy

To identify promising time-domain events swiftly, it is nec-
essary to use algorithms that allow accurate classification
with only a couple of observations. This is increasingly
necessary as surveys such as Rubin will detect millions of
transients per night which need to be disentangled together
with the scarce follow-up resources which need to be opti-
mized.

We evaluate the performance of a traditional RNN and the
two BNNs in SNN for early classification (around maxi-
mum brightness) in Figure 3. We consider a light-curve clas-
sified as type Ia if its classification probability is p;, > 0.5.
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Figure 2. Calibration: reliability diagrams for an RNN and two
BNNs: MC dropout (MC) and Bayes by Backprop (BBB).

Early classification is found to be highly-accurate. As more
observations become available we also find that the accuracy
increases. We note that BNNs are shown to have slightly
lower accuracies than a LSTM RNN. This may be improved
with careful tuning of the BNN prior parameters.

In the following, we continue exploring BNNss in this classi-
fication task with complete light-curves.

4. Interpretability: Out of distribution (OOD)
or anomalies

In this Section we present two tests designed to evaluate the
interpretability of BNN predictions for OOD or anomalies.

4.1. Entropy

Entropy has been used as a proxy for the model’s confidence
in its predictions and thus an interesting metric to evaluate
BNNs on (Fortunato et al., 2017). Confident predictions
should yield low entropy. For a dataset D : [xy, ...x x| with
N light-curves and a classification model m, the entropy of
D under m is defined as:

N

H,,|D] = ZP(Yi|Xi)109 (p(y@1|Xz)> : )

i=1

where p(y;|x;) is the classification probability given the
light-curve 7.
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Figure 3. Accuracy of type Ia vs. non Ia supernova classification
with respect to time of maximum brightness in the rest frame of a
supernova. We evaluate an RNN and two BNNs: MC dropout (MC)
and Bayes by Backprop (BBB) for the same task. Experiments
are repeated 5 times with different random seeds. The reported
accuracy is the mean accuracy. The reported error bar is the
standard deviation.

Table 1. Delta entropy between out-of-distribution events and su-
pernova classification.

MODEL RANDOM REVERSE SHUFFLE
RNN -0.02 0.01 0.03
MC -0.02 0.05 0.1
BBB -0.02 0.08 0.06

For two given sets of predictions, we can define the entropy
gap AH by:

Hy1 [D] — Hina[D) “4)

where we evaluate the entropy gap over the same dataset for
two given models (m1, m2). It is expected that predictions
on OOD datasets would have a large entropy if the algorithm
is robust. Thus the A H between these OOD and a SN-like
dataset should be positive.

We generate three different types of OOD events: time
reversed light-curves, randomly shuffled light-curves and
random fluxes. We evaluate the entropy of these predictions
in Table 1. For reverse and shuffled light-curves we find, as
expected, a high entropy gap when compared to supernova
light-curve classification. This behaviour is not seen in ran-
dom light-curves which may be attributed to their possible
resemblance to noisy low signal-to-noise supernovae.
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Table 2. Model classification accuracy, duration of classification
for 1000 light-curves and number of samples used for the results.

MODEL ACCURACY TIME(S) NUMBER SAMPLING
RNN 98.29 10 NA

BBB 98.09 315 50

BBB 97.89 129 20

BBB 97.89 35 5

MC 98.39 342 50

MC 98.39 142 20

MC 98.39 39 5

4.2. DES-like vs. ZTF light-curves

We now explore the predictions obtained for a DES-like
dataset, which is similar to the training set, and SNe Ia
candidates from ZTF selected by the FINK broker. These
candidates have been selected as probable SNe Ia by classi-
fiers such as SUPERNNOVA trained on ZTF-like data.

MC models (resp. BBB) trained on DES-like simulations
of type la supernovae obtain on average a median classifi-
cation probability of 0.9 (resp. 0.9) and standard deviation
of the classification probability distribution of 0.002 (resp.
0.001 for BBB). Contrast this with an average classification
probability of 0.6 (resp. 0.6) and standard deviation of 0.19
(resp. 0.27) on the early SNe Ia candidates from the Fink
broker. Clearly, the models are less confident in their predic-
tion for this new dataset showing an expected interpretable
behaviour.

5. Scalability

As Rubin’s data volume will be unprecedented, we require
fast classification algorithms. SNN RNN has been bench-
marked in the FINK broker, classifying 2500 light-curves
per second/core.

Here, we use a simpler benchmark to assess the classifi-
cation accuracy of BNNs with respect of the number of
samples of their probability distribution. We evaluate the
classification of 1000 light-curve using one node and the
embedded SNN database.

In Table 2 we show the classification accuracy evolution as
a function of number of samples of the probability distri-
bution. We find the decrease in accuracy is small (< 0.2
for BBB while < 0.01 for MC) compared to the reduction
of classification time in the algorithms (up to one order of
magnitude). Thus, for brokers it could be envisaged to re-
duce the number of samples to provide fast classification
with these algorithms. We note that an evaluation on the
impact of this sampling in the estimated uncertainties is left
for future work.

6. Summary

The use of Bayesian Neural Networks (BNNs) for classifica-
tion has began within the astronomical community. In this
work, we explore the use of BNNs in classification tasks.
We performed calibration and scalability benchmarks and
explored the interpretability of BNNs outputs.

BNNs are found to be highly accurate in classification tasks
with calibrated probabilities. We have also found quantita-
tive evidence that the prediction confidence of our BNNs
decreases for out-of-distribution events.

With the advent of large surveys discovering thousands of
transients every night, it will be imperative to prioritize
follow-up using partial light-curve classification. SUPERN-
NovA BNNs achieve high accuracy on this challenging
task. Future work will expand on the study of robustness of
BNN:ss, in particular supplementing probability thresholds
with prediction uncertainties to improve classification.

Software and Data

Software used in this work is open source and available in
GitHub. Trained models are available on request.
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