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Abstract
Inferring the values and uncertainties of cosmo-
logical parameters in a cosmology model is of
paramount importance for modern cosmic obser-
vations. In this paper, we use the simulation-based
inference (SBI) approach to estimate cosmolog-
ical constraints from a simplified galaxy cluster
observation analysis. Using data generated from
the Quijote simulation suite and analytical models,
we train a machine learning algorithm to learn the
probability function between cosmological param-
eters and the possible galaxy cluster observables.
The posterior distribution of the cosmological pa-
rameters at a given observation is then obtained
by sampling the predictions from the trained al-
gorithm. Our results show that the SBI method
can successfully recover the truth values of the
cosmological parameters within the 2σ limit for
this simplified galaxy cluster analysis, and ac-
quires similar posterior constraints obtained with
a likelihood-based Markov Chain Monte Carlo
method, the current state-of the-art method used
in similar cosmological studies.

1. Introduction
Studying cosmic structure formation and matter clustering
statistics (e.g., Frieman et al., 2008; Weinberg et al., 2013;
Abbott et al., 2022) in the late Universe (after redshift 2.0)
has provided a rich ground for constraining cosmology mod-
els. These studies include analyses of galaxy clusters (see
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reviews in Allen et al., 2011; Kravtsov & Borgani, 2012),
the largest gravitationally-bound structures in the Universe.
The abundances and weak lensing mass measurements of
galaxy clusters have been used to provide competitive con-
straints for ΛCDM models in ongoing cosmic surveys like
the Dark Energy Survey (DES) (Abbott et al., 2020; To et al.,
2021) , and is also projected to be powerful for studying
wCDM models in furture experiment like the Legacy Sur-
vey of Space and Time (LSST) (The LSST Dark Energy
Science Collaboration et al., 2018) at the Vera C. Rubin
Observatory.

Moving forward, one potential challenge with those cos-
mic structure studies is about efficiently acquiring Bayesian
posterior constraints of cosmological parameters, with the
increasingly complicated cosmological and astrophysical
models, and the larger parameter space generated by those
models. To date, many of the cosmic structure formation
studies rely on a Markov Chain Monte Carlo (MCMC)
method to sample parameter posterior distributions, which
further requires calculating a likelihood at running time
based on theoretical models for the observables, and takes
an increasingly long computing time which is no longer
convenient (Lemos et al., 2022).

A potential improvement to those analyses is to adopt Ma-
chine Learning through a so-called “Simulation-Based Infer-
ence” (see a review in Cranmer et al., 2020), sometimes also
known as “likelihood-free” approach (e.g., see Tam et al.,
2022, for a closely related application). In this approach, we
may precompute mock observables based on the theoretical
models, known as “simulations”, and then use those “sim-
ulations” to train a machine learning based inferer to map
out the probabilistic function (or the “likelihood” function
in alternative set-ups) between the model parameters and
their possible observables. This probabilistic function can
then be used to derive the posterior probability distribution
of the model parameters at a given observable.

In this note, we demonstrate the potential of this SBI ap-
proach by applying it to a simplified galaxy cluster abun-
dance analysis described in Section 2. In Section 3, we
describe the SBI method, the Quijote simultaions and the
analytical models. We present our results and conclusions
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in Sections 4 and 5 respectively.

2. The Galaxy Cluster Analysis

Figure 1. Block diagram illustrating the simulation-based inference
method applied in this analysis.

Galaxy clusters correspond to the most massive (typical
mass larger than 1014M⊙/h), gravitationally-bound struc-
tures in the universe, also known as dark matter halos in
cosmic simulations. The abundance and mass distribution
of massive dark matter halos are sensitive to cosmology, as
indicated by the mass function of dark matter halos (e.g.,
Press & Schechter, 1974; Tinker et al., 2008). Observa-
tionally, galaxy cluster cosmology studies often rely on the
number counts of galaxy clusters and their average masses
in an observational range as the observational data vectors,
which can be considered as summary statistics of their ob-
servations.

To resemble a typical galaxy cluster cosmology analysis,
in this note, we analyze the dark matter halo counts and
their masses in the Quijote simulations (Villaescusa-Navarro
et al., 2020) with a fiducial Planck cosmology model. These
simulations use a box volume of (1Gpc/h)

3, and follow the
evolution of 2563 or more dark matter particles. Our cosmo-
logical observables consist of the mean masses and the num-
ber counts of galaxy cluster-sized dark matter halos in four
mass bins [1014.0, 1014.2], [1014.2, 1014.4], [1014.4, 1014.6]
and [1014.6,+∞)M⊙/h at two different values of redshifts
(0 and 0.5).

We use those observables to constrain five cosmological
parameters: matter density (Ωm), baryonic density (Ωb),
Hubble’s constant (h), power law index of density pertur-
bation (ns), and the amplitude fluctuation of matter power
spectrum (σ8). The fiducial cosmology parameters are set at
Ωm = 0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624 and σ8

= 0.834 (Hahn et al., 2020). We use the dark matter halos in

this fixed-cosmology simulation suite as our observational
test sample.

3. SBI method, Quijote simulations and
analytical models

3.1. Simulation-based inference (SBI) method

Simulation-based inference (SBI) (Cranmer et al., 2020)
methods can incorporate complex physical processes and
observational effects in forward simulations (Tam et al.,
2022). SBI is a machine-learning approach to learn the
sampling distribution of data as a function of the model
parameters. The main goal of simulation-based inference is
to identify parameter sets which are both compatible with
prior knowledge and match empirical observations. The
outputs of SBI are not point estimates; rather all proba-
bilistic values of parameter space consistent with the in-
puts are identified (Lueckmann et al., 2021). We use SBI
(Tejero-Cantero et al., 2020), a neural network-based Py-
Torch package (Ketkar & Moolayil, 2021). The process is
explained by the block diagram shown in Figure 1. The
prior is first sampled to obtain an initial set of parameters,
which are used to create synthetic data using forward sim-
ulations. Data generated by forward simulations are then
passed into a gaussian mixture density network. The output
of this network is the probability distribution of the cosmo-
logical variables as a function of the observables (number
counts and mean masses of dark matter halos). The poste-
rior (probability distribution function) is then sampled to
generate the parameter space of the cosmological variables
for specific observables. One of the major advantages of
SBI over traditional likelihood-based methods is that it can
be implemented in stages – simulations, training, inference.
It provides us with an opportunity to more efficiently per-
form complicated analysis or analysis of large volume of
data.

3.2. Quijote latin-hypercube simulations

The Quijote simulation suite contains subsets of simulations
which are run for different sets of cosmological parame-
ters (Villaescusa-Navarro et al., 2020). One such example
is the latin-hypercube simulation set which contains 2000
simulations and their cosmological parameters are varied
from the standard fiducial cosmology model with Ωm in the
range of [0.1 − 0.5], Ωb = [0.03 − 0.07], h = [0.5 − 0.9],
ns = [0.8 − 1.2] and σ8 = [0.6 − 1.0]. We use the same
summary statistics (described in Section 2) for the galaxy
cluster obervables from these simulations to train the ma-
chine learning model.
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Figure 2. Posterior distributions of the cosmological parameters for analytical models (green solid), Quijote simulations (blue dashed) and
MCMC (red dashdot)

3.3. Analytical models

The galaxy cluster observables can also be calculated using
analytical formulas as:

N(∆M |z,Θ) = V (z)

∫
∆M

n(M |z,Θ) + δN ,

NM(∆M , z|Θ) = V (z)

∫
∆M

M × n(M |z,Θ),

M(∆M , z|Θ) = NM(∆M |z,Θ)/N(∆M |z,Θ) + δM .

(1)

In these equations, N(∆M |z,Θ) and M(∆M , z|Θ) are the
mock observables calculated from analytical models. V (z)
is the cosmic volume of the Quijote simulations that the
problem is based upon. n(M, z|Θ) is the theoretical halo
mass function that describes the number density of dark
matter halos at redshift z, which has an analytical form
depending on cosmology, indicated by Θ. In this analysis
Θ refers to the five cosmological parameters, Ωm, Ωb, h,
ns and σ8. We make use of the Bhattacharya et al. (2011)
halo mass function for the FOF halo mass definitions imple-
mented in Colossus, with a linear correction (Costanzi et al.,
2019) to account for differences with the Quijote simula-
tions. Furthermore, δN and δM represent noises added to
the analytical models, caused by cosmic variance. We use
the Quijote fixed cosmology simulations to estimate the cos-

mic variances for N(∆M |z,Θ) and M(∆M |z,Θ), and then
randomly draw a gaussian uncertainty according to those
variances, δN and δM , for each set of mock observables. In
the end, we generate those analytical model simulations for
over 10,000 sets of cosmological parameters. Specifically,
we use a total of 11378 simulations to train the model. It
is to be noted that the fast analytical simulations give valid
insights and generating these simulations is feasible for this
particular study.

Later in this analysis, the cosmic variances used in this
fast analytical methods are used as the covariance matrices
in a multi-dimensional Gaussian likelihood implemented
in a Markov Chain Monte Carlo method as a comparison
analysis.

4. Results
4.1. SBI method

We derive the posterior distributions of the five cosmological
parameters with SBI method using the Quijote simulations
(blue dashed lines), and the analytical models (green solid
lines) as the training samples. The black dashed lines repre-
sent the truth values of those parameters. For comparison,
we show the posterior results from Markov Chain Monte
Carlo (MCMC) process, a state-of-the-art default method
for sampling the posterior parameter distributions in such an
analysis. In this comparison, the MCMC results are shown
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Figure 3. Distribution of bias (upper panel) and uncertainty (lower
panel) for 100 test samples for analytical models (red) and Quijote
simulations (blue)

by red dashdot lines.

As shown in Figure 2 and listed in Table 1, the truth values
of the parameters are reasonably recovered by the MCMC
method, and the SBI method applied to both the Quijote
simulations and the analytical-model based simulations. For
Ωm, the truth value is recovered at 0.1σ, 1.6σ and 2.2σ level
by the Quijote simulations, analytical models and MCMC
method respectively. For the other four parameters, the
truth values are recovered within the 1σ range by all three
methods. For h and ns, the SBI bias (both Quijote and ana-
lytical simulations) is much smaller than the corresponding
MCMC bias.

In cosmological analysis, it is also important to accurately
estimate the posterior uncertainties of the cosmological pa-
rameters, so as to correctly evaluate consistency and tensions
between different cosmological models. While the MCMC
method (state-of-the-art model) and the analytical-model
based SBI method yield similar levels of uncertainties, the
Quijote simulations based SBI method results in larger un-
certainties than the other two methods for all parameters
except Ωb. The histograms in Figure 3 show the bias and
uncertainty distributions for 100 test samples for the ana-
lytical simulations (red) and the Quijote simulations (blue)
for Ωm and h. Both methods result in symmetric bias distri-
butions. For the analytical simulations, the bias tends to be
distributed over a smaller range of values, and uncertainties
are smaller (same result as Figure 2) than the Quijote sim-
ulations. We suspect that this might be due to the training
sample size being too small in the latin-hypercube (Quijote)
based results, and explore further in the next subsection.

Figure 4. Uncertainty (upper panel) and bias (lower panel) for
different number of training samples for analytical models, Quijote
simulations and MCMC

Table 1. Estimates of cosmological parameters obtained using SBI
and MCMC along with the truth values

Parameters Truth Analytical Quijote MCMC

Ωm 0.317 0.314+0.002
−0.002 0.317+0.003

−0.003 0.315+0.001
−0.001

Ωb 0.049 0.051+0.009
−0.009 0.050+0.011

−0.011 0.049+0.011
−0.011

h 0.671 0.672+0.091
−0.091 0.679+0.119

−0.119 0.744+0.095
−0.095

ns 0.962 0.982+0.067
−0.067 0.966+0.087

−0.087 0.930+0.066
−0.066

σ8 0.834 0.836+0.003
−0.003 0.831+0.004

−0.004 0.835+0.003
−0.003

4.2. Bias and uncertainty variation with training sample
size

We further evaluate how the bias and uncertainty level of
the posterior constraints vary with different training sample
sizes used in analytical-model based SBI method. We define
bias and uncertainty (σ) as:

bias = θ̄Posterior − θtruth

σ =

√∑N
n=1(θPosterior,i−θ̄Posterior)2

N

In Figure 4, we plot the uncertainty (black circles) and bias
(black squares) for different sizes of training sets using data
generated from the analytical models for Ωm and h . We
start with 1000 samples and increase the training sample
size in steps of 1000 until we reach 10000 samples. Uncer-
tainty and bias corresponding to the MCMC (blue dashed
lines and blue circles) and latin-hypercube simulations (red
stars) are also plotted on the same axes. The uncertainty
plots (upper panel) show that apart from some random fluc-
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tuations, uncertainty reduces with an increase in the number
of training samples for Ωm and stablizes when the sample
size reaches ∼5000, for which the MCMC bias is about
33% lower than the analytical-simulations SBI bias. A sim-
ilar trend is also observed for σ8 (not shown). There is no
observed correlation between the training sample size and
the uncertainty of h, Ωb (not shown), and ns(not shown),
indicating that the contraints are not affected by the training
sample size we tested here. The convergent value of analyti-
cal SBI uncertainty for these parameters is comparable to
that of the MCMC method.

According to the results shown in the lower panel of Fig-
ure 4, on average, the SBI bias based on analytical simu-
lations diminishes as the size of training sample increases
for Ωm. For h, the bias is nearly constant and independent
of training sample size. Like the uncertainty, the bias for
σ8 shows a trend similar to Ωm, and the bias for Ωb and ns

follow the trend similar to h. MCMC bias is comparable
to the SBI analytical bias for Ωm, and is higher than the
analytical bias for h.

5. Conclusions
We have applied a simulation-based inference method to a
galaxy cluster cosmological analysis, using data generated
from the Quijote latin-hypercube simulations and analytical
models. Our results show that SBI method can recover the
truth cosmological parameters for this galaxy cluster analy-
sis within the 2σ limit. On average SBI method results in
smaller bias than MCMC. We have also evaluated the depen-
dence of bias and uncertainty on the training sample size for
the analytical simulations and conclude that the uncertainty
converges for a sample size ∼5000. The success of this
attempt demonstrates that SBI is a promising method to be
employed in future galaxy cluster cosmological analyses to
shed light on the long-standing cosmological mysteries.
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baum, R., Eifler, T., Hložek, R., Collett, T., Gawiser,
E., Scolnic, D., Alonso, D., Awan, H., Biswas, R.,
Blazek, J., Burchat, P., Chisari, N. E., Dell’Antonio,
I., Digel, S., Frieman, J., Goldstein, D. A., Hook, I.,
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