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Abstract

The future astronomical imaging surveys are set
to provide precise constraints on cosmological
parameters, such as dark energy. However, pro-
duction of synthetic data for these surveys, to test
and validate analysis methods, suffers from a very
high computational cost. In particular, generating
mock galaxy catalogs at sufficiently large volume
and high resolution will soon become computa-
tionally unreachable. In this paper, we address
this problem with a Deep Generative Model to
create robust mock galaxy catalogs that may be
used to test and develop the analysis pipelines
of future weak lensing surveys. We build our
model on a custom built Graph Convolutional
Networks, by placing each galaxy on a graph node
and then connecting the graphs within each gravi-
tationally bound system. We train our model on
a cosmological simulation with realistic galaxy
populations to capture the 2D and 3D orientations
of galaxies. The samples from the model exhibit
comparable statistical properties to those in the
simulations. To the best of our knowledge, this is
the first instance of a generative model on graphs
in an astrophysical/cosmological context
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1. Introduction
Upcoming astronomical imaging surveys such as the Vera
C. Rubin Observatory Legacy Survey of Space and Time
(LSST)1, Roman Space Telescope2 High Latitude Survey
(HLS) and Euclid3 will aim to answer fundamental questions
about the nature of dark matter and dark energy, by precisely
measuring the distribution and properties of billions of
galaxies.

The analysis of these surveys will require having an ac-
cess to large scale cosmological simulations for a variety
of applications, ranging from validating analysis pipelines
(DeRose et al., 2019; 2021) to constraining cosmology
through Simulation-Based Inference (SBI; Jeffrey et al.,
2021). However, as the volume and data quality of future
surveys increases, cosmological simulation must cover in-
creasingly large volumes at high resolution (Vogelsberger
et al., 2020). Full hydrodynamical simulations, which can
resolve the formation and evolution of individual galaxies,
are extremely expensive and cannot scale to such volumes.
This motivates the need for emulation methods capable of
generating realistic mock galaxy catalogs without relying on
a full simulation. One traditional solution to this problem
has been to (semi-)analytically paint galaxies on N-body
(gravity only) simulations. However, the assumptions behind
these (semi-)analytical models may not be robust and need
validation from non-parametric models (Somerville & Davé,
2015). While machine learning would be an appealing solu-
tion to this problem, One of the main difficulties in building
ML-based non-parametric models for such simulations is the
fact that the data to emulate is catalog-based (i.e., a catalog
of galaxy positions and properties in the simulation volume)
and that each galaxy cannot be treated independently if
important correlations between galaxies are to be preserved.

In this work, we propose to address this emulation problem
with a conditional deep generative model, capable of model-

1https://www.lsst.org/
2https://roman.gsfc.nasa.gov/
3https://www.euclid-ec.org/
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ing relevant galaxy properties and their inter-dependencies,
conditioned on the underlying large-scale structure scaffold-
ing. Our model combines a customized graph convolutional
network architecture, to model the correlations between
galaxies, with a Wasserstein Generative Adversarial Net-
work to build a probabilistic model of galaxy properties. To
the best of our knowledge, this work is the first instance of a
deep generative model on graphs introduced in astrophysics.

We apply our model to the particularly challenging problem
of modeling the intrinsic alignments of galaxies. The model
is able to learn and predict both (a) scalar features such
as galaxy shapes, and more importantly, (b) correlated
vector orientations in 3D and in 2D to a good quantitative
agreement.

2. Related Work
In the literature there is substantial work on galaxy property
emulators. In some cases (Agarwal et al., 2018; Modi
et al., 2018; Zhang et al., 2019) the approach has been to
’paint’ galaxy properties onto N-body (dark matter – gravity
only) simulations. However, these methods typically do not
model correlations between galaxies and only predict scalar
quantities, as opposed to our model which predicts both
vector and scalar quantities.

While graph neural networks have been proposed in the
context of cosmological simulations in previous work, it is
the first time that they are used to build generative models
for galaxy properties. Cranmer et al. (2020) trained a
graph neural network on a cosmological simulation and then
extracted symbolic equations pertaining to physical laws.
Villanueva-Domingo et al. (2021), on the other hand, used
graph neural networks to infer halo masses.

3. Directional Graph Convolutional Networks
A key feature of our problem is that the neural architecture
needs to model direction- and distance-dependent correla-
tions between galaxies. Instead of relying on a generic
message-passing approach to build a graph neural net-
work, we use our physical insight to build an architecture
with explicit dependence on relative distance and orien-
tation between graph nodes, as described below. In this
work, we are considering undirected and connected graphs:
G = (V, E,W), whereV is the set of graphs vertices, with
|V| = 𝑛 the number of vertices, E is the set of graph edges
andW ∈ R𝑛×𝑛 is the weighted adjacency matrix. We adopt a
first order approximation to parameterize graph convolutions
(Kipf &Welling, 2016), and define one Graph Convolutional
Network layer with an activation 𝑦𝑖 for a node 𝑖 as:

∀𝑖 ∈ V, 𝑦𝑖 = b + W0ℎ𝑖 +
∑︁
𝑗∈N𝑖

𝑤𝑖, 𝑗W1ℎ 𝑗 (1)

where b represents a vector of bias terms;N𝑖 denotes the set
of immediate neighbors4 of vertex 𝑖;W0 are the weights that
apply a linear transform to the activation vector ℎ𝑖 of node
𝑖 (i.e., self connection); 𝑤𝑖, 𝑗 are linear transforms on the
activation vectors ℎ 𝑗 of the nodes 𝑗 in the neighborhood of
𝑖; andW1 are the set of weights that apply to the immediate
neighbors.

Following an approach proposed in Verma et al. (2017), we
implement direction-dependent graph convolution layer as

𝑦𝑖 = b + W0ℎ𝑖 +
𝑀∑︁
𝑚=1

1
|N𝑖 |

∑︁
𝑗∈N𝑖

𝑞𝑚 (r𝑖 , r 𝑗 )W𝑚ℎ 𝑗 . (2)

Here |N𝑖 | denotes the cardinality of the set N𝑖 , 𝑀 is the
number of directions, and r𝑖 are the 3D Cartesian coordi-
nates of the node. The 𝑞𝑚 (r𝑖 , r 𝑗 ) are normalized so that∑𝑀

𝑚=1 𝑞𝑚 (r𝑖 , r 𝑗 ) = 1 and are defined as:

𝑞𝑚 (r𝑖 , r 𝑗 ) ∝ exp
(
−d𝑡

𝑚 · (r 𝑗 − r𝑖)
)
𝑔𝜆 (∥ r𝑖 − r 𝑗 ∥22), (3)

where the {d𝑚}𝑚∈[1,𝑀 ] are a set of directions we want to
make the kernel sensitive to, and 𝑔𝜆 is a parametric function
of the distance between two vertices. This can be seen
as a hard-coded direction-dependent attention mechanism
allowing the model to gain directional awareness by design.
We further chose an exponential parametrization of the form
𝑔𝜆 (𝑟) = exp

(
−𝑟2/2𝜆2

)
for the distance-dependence, where

𝜆 is fit automatically during training. Note that more generic
functions could be used, but this empirical parametrization
was found to work well for our problem.

4. Generative Model with Graphs
Our goal is to learn and sample from a conditional proba-
bility density 𝑝(𝒚 |𝒙), where 𝒚 might be an orientation of a
galaxy, and 𝒙 would be quantities such as the dark matter
mass of a galaxy or the tidal field at its location. We model
this distribution by employing a conditional Wasserstein gen-
erative adversarial network (GAN, Goodfellow et al. 2014).
GANs were chosen to model complex joint probability den-
sities of all galaxies in a halo, without needing a parametric
form/probability model.

Given a generating function 𝑔𝜃 (𝑧, 𝒙) with 𝑧 ∼ N(0, 𝑰), we
aim to adjust the implicit distribution generated by 𝑔𝜃 to
match our target distribution 𝑝(𝒚 |𝒙). This can be done by
minimizing the Wasserstein 1-distanceW between these
two distributions to find an optimal set of weights 𝜃★. By
using an approximate Wasserstein distance, we are solving

4Immediate neighbors or first neighbors are neighbors that are
one hop away from node 𝑖.
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the following minimax optimization problem:

argmin
𝜃

(
sup
𝜙

E(𝑥,𝑦)
[
𝑑𝜙 (𝒙, 𝒚) − E𝑧

[
𝑑𝜙 (𝑔𝜃 (𝒛, 𝒙), 𝒚)

] ] )
(4)

Additionally, we must keep the Lipschitz constant bounded,
to ensure that 𝑑𝜙 indeed parameterizes a Wasserstein dis-
tance. In Arjovsky et al. (2017), the authors have clipped the
weights of the model to ensure the Lipschitz condition. Later
Gulrajani et al. (2017) showed that the gradient constraint
performs better – thus in this work we adopt a gradient
penalty.

5. Application: Emulating Galaxy Intrinsic
Alignments in Illustris-TNG simulations

Images of distant galaxies come to us with distortions, ex-
cluding camera and atmospheric effects. These distortions
are caused by a phenomena known as weak gravitational
lensing, where light traveling from the galaxy gets deflected
due to the presence of a massive objects (like a galaxy clus-
ter) on the light’s pathway. Weak lensing is measured using
statistical ensembles of galaxies and their coherent shape
distortions, which are caused by the matter distribution in the
Universe coherently distorting space-time. However, weak
lensing measurements suffer from a number of systematics,
one of which is intrinsic alignments - where galaxies are
not oriented randomly in the sky in the absence of weak
lensing effects, but rather tend to point towards dense re-
gions, including those hosting other galaxies. This effect
contaminates our desired weak lensing signal and can bias
our measurement of dark energy. Realistic modeling of these
alignments in mock galaxy catalogs is therefore paramount
to validate the robustness of analysis pipelines.

5.1. Simulated data

In this work we are using the hydrodynamical TNG100-1 run
from the IllustrisTNG simulation suite (for more information,
please refer to Nelson et al., 2018; Pillepich et al., 2018;
Springel et al., 2018; Naiman et al., 2018; Marinacci et al.,
2018; Nelson et al., 2019). We employ a minimum stellar
mass threshold of log10 (𝑀∗/𝑀⊙) = 9 for all galaxies, using
their stellar mass from the SUBFIND catalog.

5.2. Graph construction

To construct the graph for the cosmic web (i.e., for the
subhalos and the galaxies), we first grouped all subhalos and
galaxies based on their parent halo. Given a galaxy catalog,
an undirected graph based on the 3D positions within the
parent halo is built by placing each galaxy on a graph node.
Then, each node has a list of features such as mass and
tidal field. To build the graph connection for a given group,

Figure 1. The cosmological simulation box modeled as a graph.
Here every node represents a galaxy and the connections are made
using the r-NN algorithm within each gravitationally bound system.
Graph animation adapted from Coutinho et al. (2016).

the nearest neighbors within a specified radius for a given
node are connected via the undirected edges with signals on
the graphs representing the alignments. A snapshot of the
simulation represented as graphs is shown in Fig. 1, where
each node represents a galaxy and the connections between
the nodes are represented by grey lines.

5.3. Model Architecture

In Fig. 2 we outline the architecture of our model. We have
list of features (orange box) that are relevant for capturing
the dependence of intrinsic alignments within a halo (dashed
red box), and the tidal fields that are relevant for capturing
the dependence of IA for galaxies on matter beyond their
halo (dashed purple). These inputs are fed into the GAN-
Generator (crimson box), which tries to learn the statistical
distribution of the desired output labels (yellow box). At the
end the input and the output from the GAN-Generator are fed
into the GAN-Critic (blue box) to determine the performance
of the GAN-Generator. In our model, the Generator has 5
layers each with {128,128,16,2,2} neurons, while the Critic
has 4 layers each with {128,128,64,32} neurons followed by
a mean-pooling layer and a single output neuron.

5.4. Training

We train the model using the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 10−3 and exponential decay
rates of 𝛽1 = 0 and 𝛽2 = 0.95. During the adversarial
training we train the Generator for 5 steps and the Critic for
1 step with a batch size of 64 (one batch is set of graphs)
and a leaky ReLU activation function. As is common with
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Figure 2. Architecture of the graph convolution GAN model used. Here, the input features are typical of medium to high resolution
N-body (gravity only) simulations. The e = (𝑒1, 𝑒2) is the 2D quantity that parametrizes the galaxy orientation in the sky.

GANs, our GAN models do not converge; we arbitrarily
stop the training once it reached a reasonable result. Our
code is available at [].

5.5. Results

Throughout the section we refer to the sample generated
from the Graph-Convolutional Network-based Generative
Adversarial Networks as the GAN sample, and the sample
from the TNG100 simulation as the TNG sample.

For our key result, we examine 𝑤𝑔+, the density-shape
correlation function computed using the ellipticities (can be
thought of as the 2D orientation and flattening of a galaxy
when modeled as an ellipse), as shown in Fig. 3. The
projected density-shape correlation function 𝑤𝑔+ captures
the correlation between overdensity and projected intrinsic
ellipticity, as is commonly used in observational studies.
Positive values for 𝑤𝑔+ indicate that galaxies exhibit a
coherent alignment towards the locations of other nearby
galaxies. We split our sample roughly 50/50 into training
and testing samples, while preserving group membership
of subhalos and galaxies. The projected 2D correlation
function, 𝑤𝑔+, from the GAN agrees quantitatively with the
measured one from TNG simulation. Here, the errorbars
were derived from an analytic estimate of the covariance
matrix, which includes Gaussian terms for noise and cosmic
variance (for more details see Singh et al. 2017; Samuroff
et al. 2020). Additionally, our model is also able to predict
3D orientations and scalar quantities to a similar level of
quantitative agreement.

6. Conclusions
In this abstract, we have presented a novel deep generative
model for scalar and vector galaxy properties. Using the
TNG100 hydrodynamical simulation from the IllustrisTNG
simulation suite, we have trained the model to accurately
predict galaxy orientations. For a simulation box of 75
Mpc/h with 20k galaxies, the training takes about 3–4 days
on a modern GPU; applying the model to a dataset of equal

Figure 3. Projected two-point correlation functions 𝑤𝑔+ of galaxy
positions and the projected 2D ellipticities of all galaxies, split into
roughly equal-sized training and testing samples while preserving
group membership. The top panel shows 𝑤𝑔+ as a function of
projected galaxy separation 𝑟𝑝 measured using data from the TNG
simulation in yellow and the data generated by the GAN in dotted
green, while the bottom panel shows the ratios among the curves
as indicated by the label. All four curves are in good quantitative
agreement, suggesting that the GAN is not significantly overfitting.
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size is very fast (less than a minute).

Overall, the Graph Convolution based Generative Adversar-
ial network learns and generates scalar and vector quantities
that have statistical properties (distributions and alignment
correlations) that agree well with those of the original simu-
lation. Learning galaxy orientations is part of a more general
problem called Galaxy-Halo connection. The problem can
be stated as follows: given some properties of a dark matter
halo can we predict what type of galaxy it hosts, or vice
versa? Our results represent a concrete step towards address-
ing this complex problem with Graph Neural Network-based
Deep Generative Models.

Future work includes applying this model on a much higher
volume N-body simulation with lower resolution in order to
utilize the power of deep generative models for upcoming
cosmological surveys. Additionally, incorporating symme-
tries such as SO(3) or E(3) and making equivariant neural
networks for graphs (Horie et al., 2020; Satorras et al., 2021)
would be a useful development.
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