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Abstract

Simulation-based inference (SBI) is rapidly estab-
lishing itself as a standard machine learning tech-
nique for analyzing data in cosmological surveys.
Despite continual improvements to the quality of
density estimation by learned models, applica-
tions of such techniques to real data are entirely
reliant on the generalization power of neural net-
works far outside the training distribution, which
is mostly unconstrained. Due to the imperfections
in scientist-created simulations, and the large com-
putational expense of generating all possible pa-
rameter combinations, SBI methods in cosmology
are vulnerable to such generalization issues. Here,
we discuss the effects of both issues, and show
how using a Bayesian neural network framework
for training SBI can mitigate biases, and result
in more reliable inference outside the training set.
We introduce cosmoSWAG, the first application
of Stochastic Weight Averaging to cosmology,
and apply it to SBI trained for inference on the
cosmic microwave background.
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1. Introduction
We are entering a new era for cosmology. Traditionally,
the field has relied on likelihood-based methods, in which
we compress our data into summary statistics, for which
we can make theoretical predictions and build likelihood
functions. However, with the development of practical ma-
chine learning tools for high-dimensional data over the last
decade, it is now possible to perform cosmological analysis
even for intractable likelihoods. Instead of a likelihood, we
can use simulations of observables to perform parameter
inference, and model comparison. This technique is often
called Likelihood-Free Inference, approximate Bayesian
computation (ABC, Csilléry et al., 2010; Beaumont, 2010;
Sunnåker et al., 2013), implicit-likelihood inference (ILI)
or simulation-based inference (SBI) (Thomas et al., 2016).
We will adopt the latter term in the remainder of this work.
SBI allows us to perform parameter inference and model
comparison, even in situations where the likelihood is in-
tractable, such as field-level inference (Leclercq & Heavens,
2021).

Multiple SBI methods have been developed in recent years,
but particularly relevant to cosmology is Density Estimation
Likelihood-Free Inference (DELFI, also known as neural
posterior estimation Bonassi et al., 2011; Fan et al., 2013;
Papamakarios & Murray, 2016; Lueckmann et al., 2017),
which uses a density estimator to estimate the likelihood.
This method has multiple advantages: it uses all available
simulations and estimates the full-dimensional posterior
distributions, not just marginalised posteriors. However,
practical applications of DELFI to cosmology often en-
counter two issues (Cranmer et al., 2020): The first one
is the limited number of available simulations. To circum-
vent the curse of dimensionality, the original DELFI method
proposes using a step of massive data compression, which
reduces the dimensionality of the data to the dimension-
ality of the parameter space. This facilitates the task of
density estimation. Proposed data compression methods
include MOPED (Heavens et al., 2017) and Information
Maximizing Neural Networks (IMMNs, Charnock et al.,
2018; Makinen et al., 2021). These methods, however, rely
on either a covariance matrix for the data errors or the ability
to generate a large number of simulations to estimate a co-
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variance. When none of these conditions are met, other data
compression methods have to be used, which will generally
lead to a lossy compression – meaning it does not retain all
information about the parameters – and a loss of accuracy.
This will be the case if we intend to apply DELFI to an exist-
ing suite of simulations, such as the QUIJOTE (Villaescusa-
Navarro et al., 2020) and CAMELS (Villaescusa-Navarro
et al., 2021) simulations.

The second issue of practical applications of DELFI, and
SBI in general, is difficulty simulating realistic observations.
It does not matter how good the performance of our SBI
algorithm is if we have failed to generate simulations that
model all systematic effects and observational errors. In
interesting examples, it is impossible to model everything.
Therefore, we try to get as close as possible. But we need
to deal with the fact that our simulations are likely to be im-
perfect. Furthermore, most SBI methods, including DELFI,
have no way of informing us whether the observations we
are trying to analyse are different from our simulations. How
do we then interpret a surprising result coming from an SBI
analysis? As a true scientific discovery, or a failure to gener-
ate realistic enough simulations? In this work, we present
a way to mitigate this effect: We propose using Bayesian
neural networks (BNNs) in our SBI analysis. BNNs are
well known to provide better generalization to observations
that have not been used during training (Kononenko, 1989;
MacKay, 1995; Gal & Ghahramani, 2016; Yallup et al.,
2022). Therefore, in the presence of unknown systematics,
BNNs will give us larger errors, instead of biased poste-
riors. With this goal in mind, in this work, we introduce
cosmoSWAG, the first application of stochastic weight av-
eraging (SWA, Maddox et al., 2019; Wilson & Izmailov,
2020) to cosmology.1 SWAG was previously used in astron-
omy (Cranmer et al., 2021) to accurately predict planetary
instability of five-planet systems, despite only training on
three-planet systems.

The goal of this paper is to study how we can maximize the
accuracy of a DELFI analysis, for a fixed suite of simula-
tions, and in the case in which running more simulations
is not possible. This is the situation we find ourselves in if
we want to perform a DELFI analysis with existing data, in
situations where simulations are costly.

2. Simulator
To set up a realistic cosmological analysis, that we can ap-
ply DELFI to, we choose to use simulations of the Cosmic
Microwave Background (CMB) power spectrum. The main
reason to do this is that this is a problem where it is easy, and
computationally cheap, to generate a suite of simulations;

1The code is available at https://github.com/
Pablo-Lemos/cosmoSWAG.
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Figure 1. Three example simulations, chosen from three random
parameter draws from the prior Tab. 1, and true data as observed
by Planck in blue.

and that this is a problem where we can actually write down
a likelihood and perform a likelihood-based analysis. There-
fore, by using this simulator, we can compare our obtained
posterior distributions to the ones we should obtain. (Cole
et al., 2021) already used the CMB to test the performance
of an SBI model.

Our approach is therefore the following:

1. We use CAMB (Lewis et al., 2000; Lewis & Bridle, 2002;
Howlett et al., 2012) to generate a suite of 10.000 CMB
power spectra. We use `max = 2500, and use only, the
power spectrum of temperature anisotropies.

2. We then use Planck 2018 TT (Aghanim et al., 2020) na-
tive likelihood used in the code cobaya (Torrado & Lewis,
2021), to convert this power spectrum into a binned power
spectrum, at 215 multipole bins.

3. We use the Planck TT data and covariance matrix in
the same likelihood, as our observed data and error model,
respectively. One advantage of this likelihood is that it uses
only multipoles ` > 30, and approximates the error model
at those scales by a normal distribution.

We show some example simulations, as well as the true
observation in Fig. 1. Our simulations are drawn from a
uniform prior, shown in Appendix A.

3. Analysis
3.1. DELFI with data compression

To perform parameter inference using our CMB simulations,
we start by doing the DELFI analysis we would under ideal
circumstances, as described in (Alsing et al., 2018; 2019).
In this analysis, we start with a step of massive data com-
pression that reduces the dimensionality of the data to the

https://github.com/Pablo-Lemos/cosmoSWAG
https://github.com/Pablo-Lemos/cosmoSWAG
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Figure 2. One and two-dimensional marginalised posterior distributions for the different variations of DELFI presented in Sec. 3 using
Planck data. The left plot shows the results for DELFI without compression, using an MDN, with marginalised results in red, and
non-marginalised in orange. In blue, we show the likelihood-based analysis. The right plot shows the same for DELFI with compression.
The contours represent the 68 and 95 % confidence levels. This plot was generated using GetDist (Lewis, 2019)

dimensionality of the parameter space. We can ensure this
compression is lossless when data is abundant, e.g. in a
situation when we can quickly generate large numbers of
new simulations, through algorithms such as MOPED and
IMNN. However, we want to test how well we can perform
using only a fixed set of simulations, to simulate a realistic
scenario. In that case, the neural network compression will
be inaccurate and hence it may lose information about the
parameters. We use a neural compressor, which is just a
neural network that tries to predict parameter values from
data. This compresses the data into the dimensionality of
the parameter space, but that compression can be imperfect.
We use a neural network with 6 hidden layers, each con-
taining 128 neurons. We use rectified linear unit (ReLU,
Agarap, 2018) activation functions, and L2 regularization
of the weights, with a regularization factor 0.1. Our loss is
the mean squared error. During training, we add noise to
each input according to the noise model described in Sec. 2.

We then use the predictions of this neural network as the
compressed data in our DELFI analysis. We use a masked
autoregressive flow (MAF, Papamakarios et al., 2017) as
a density estimator, containing a stack of 5 masked au-
toencoders (Germain et al., 2015), each containing two
hidden layers with 30 neurons each. We do this using
the pyDELFI package available at https://github.
com/justinalsing/pydelfi.

3.2. DELFI without data compression

Given that we expect the compression to be lossy, it is
natural to ask ourselves the question: What about using no
compression at all? After all, density estimation techniques
such as normalizing flows have been applied successfully
to high dimensional data, such as images (Helminger et al.,
2020). Therefore, we try to perform our DELFI analysis
directly from the data.

We use Mixture Density Networks (MDN, Bishop, 1994)
for density estimation, instead of MAFs. The reason for this
is that we want to compare the results of this section, to the
results of the following section using cosmoSWAG, and at
present time cosmoSWAG does not support MAFs. We did
compare the results of this section using MDNs and MAFs
and found that MAF gets slightly tighter contours, but the
differences are not large enough to affect our conclusions.

Therefore, we use a neural network with the same struc-
ture as the one used in Subsection 3.1, but with a different
number of outputs, as described in Appendix B.

3.3. DELFI without data compression and with weight
marginalisation

Next, we repeat the analysis of DELFI with an MDN, but ap-
plying SWA to the neural network. The basic idea is, starting
from a pre-trained set of neural network weights, to perform

https://github.com/justinalsing/pydelfi
https://github.com/justinalsing/pydelfi


Robust SBI in Cosmology with BNNs

60 70

H0

0.92

0.94

0.96

0.98

n
s

2.9

3.0

3.1

lo
g
A

0.10

0.12

0.14

Ω
c
h

2

0.020

0.022

0.024

Ω
b
h

2

0.022

Ωbh2

0.10 0.13

Ωch2

2.9 3.1

logA

0.93 0.97

ns

Synthetic datavector

DELFI no compression + SWA

DELFI no compression

60 70

H0

0.92

0.94

0.96

0.98

n
s

2.9

3.0

3.1

lo
g
A

0.10

0.12

0.14

Ω
c
h

2

0.020

0.022

0.024

Ω
b
h

2

0.022

Ωbh2

0.10 0.13

Ωch2

2.9 3.1

logA

0.93 0.97

ns

Synthetic datavector

DELFI + compression + SWA

DELFI + compression

Figure 3. The same as Fig. 2 using a synthetic data vector with added noise, as described in Subsection 4.2.

stochastic gradient descent with a constant large learning
rate. We average the weights as the model is trained, and
use the evolving weight values to approximate a mean and
covariance matrix for the neural network weights. While
this assumes that the posteriors on the weights are Gaussian,
the method provides an estimate of the weight uncertainty,
and therefore the uncertainty of the predictions. More mo-
ments could be computed to characterize the posterior in
more detail and assess the validity of the Gaussian assump-
tion. Furthermore, when estimating the covariance matrix
of the neural network weights, we use a tunable ‘scale’ hy-
perparameter. The reason for this hyperparameter is that
the covariance matrix estimated by SWA will depend on the
learning rate. While for an optimal learning rate (Mandt
et al., 2017), the scale parameter should be set to 0.5, in
practice it is possible to use the scale hyperparameter to
rescale the covariance, and therefore the posterior width. In
this work, we use the validation set to find the optimal value
of the scale hyperparameter, as explained in Appendix D.
A more detailed description of the method can be found
in (Maddox et al., 2019).

BNNs provide two important advantages over traditional
neural networks. Robustness to overfitting (Hernández-
Lobato & Adams, 2015) and generalization properties (Wil-
son & Izmailov, 2020). Robustness to overfitting means that
we are less likely to get biased posteriors. More importantly,
the generalization properties mean that our SBI algorithm
should perform better when our observed data does not per-
fectly match the simulations, either because of systematics
or observational effects in the data that are not present in the

simulations or because the theoretical model we are using
to simulate is incorrect. We test this using our simulator in
the following section.

3.4. DELFI with data compression and with weight
marginalisation

Finally, we can repeat the DELFI analysis with massive
compression, adding marginalisation. While we could in
principle optimize over both compression and density esti-
mation steps, data compression is the most likely to lead to
overfitting, and potential biases. Therefore, we use marginal-
isation with SWA on the data compression only and use a
MAF for density estimation. The effect of using marginali-
sation on both steps will be explored in future work.

4. Results
4.1. Comparison with likelihood-based analysis

The results of applying all four versions of our DELFI anal-
ysis are shown in Fig. 2. We first focus on the left panel,
using no compression. We see that the DELFI posteriors do
correctly capture the degeneracies of the likelihood, as the
ellipses are ‘tilted’ in the same way as the real ones. The
size of both DELFI posteriors is larger than the likelihood-
based one. This is caused by the fact that we are using a
limited number of simulations. When we include marginal-
isation with SWA, the size of the contours increases and
improves the agreement with the expected result. These
results are further confirmed by repeating the analysis on
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several validation simulations, as shown in Appendix C.1:
We get slightly underconfident results with DELFI, even
before marginalisation, meaning we can trust the posteriors.

When we instead use data compression, we see that we
obtain slightly smaller contours. Marginalisation in this
case leads to a significant increase in the contours. Again,
the fact that all our DELFI posteriors are larger than the
likelihood-based posterior, is a consequence of our limited
number of simulations. In general, when our number of
simulations is limited, our SBI analysis will lose some of
its potential constraining power. Our validation test (shown
in Appendix C.1) shows good results for this case, even
before marginalization.

4.2. Generalization

In this section, we aim to test how our system behaves in the
presence of unknown systematics or observational effects
in the data, that are not present in the simulations. This
issue will, to an extent, always affect SBI analysis when ap-
plied to real observations. To test it, we repeat the analysis,
changing the observed Planck data vector for a synthetic ob-
servation. The new data vector is obtained by running CAMB
at a fiducial cosmology, adding noise from the noise model
described in Sec. 2, and then adding extra Gaussian noise
at small scales ` > 1000. We choose this multipole range
because these are the scales at which Silk damping (Hu
et al., 1997) is the dominant effect. Therefore this artificial
systematic could be interpreted as some unknown physics
associated with Silk damping. Given that this extra noise has
been added to any of the training simulations, our observed
data is different from any of the simulations our DELFI
algorithm has been trained on.

The results of the analysis are shown in Fig. 3. Using no
compression, we get consistent results, but we can see that
when we do not marginalise with SWA, we get biased pos-
teriors in some parameters, in this case, especially in logA.
In this case, because we know the true parameters, we can
calculate the excess probability (EP) of the true parameters,
as described in Appendix C. In this case, we get EP = 0.19
without marginalisation, and EP = 0.24 when marginalis-
ing, showing that marginalisation does improve our results.
In Appendix C.2, we repeat this for all simulations in the
validation set and find that indeed the non-marginalised case
is overconfident, whereas with marginalisation we can get
good constraints by adjusting the scale hyperparameter.

When we use compression, the results without marginali-
sation show very clear and dramatic biases, with an excess
probability of EP ∼ 3 · 10−4. This shows that neural com-
pression can lead to dangerous biases when the observed
data is different from the simulations. This is very much in
line with the fact that simple neural networks generally do
not handle covariate shift very well, since they may include

computations that involve combining irrelevant variables
in such a way that a distribution shift can lead to drastic
changes in outcomes. Marginalising greatly improves the
reliability of these results, at the expense of increasing the
error bars EP ∼ 0.088. This is expected, given the better
generalization properties of BNNs. Therefore, unless we
are fully confident that our simulations contain all the obser-
vational effects that affect the data, we strongly recommend
using marginalisation, to avoid biased results. Appendix C.2
repeats this analysis for several validation simulations and
again shows biased contours when using compression if we
do not marginalise. Therefore, we see how in both cases, the
generalization properties of BNNs mean that SWA greatly
increases the reliability of our SBI analysis when simula-
tions do not perfectly match the data.

5. Conclusions
In this work, we have shown how to address some difficul-
ties encountered in DELFI analyses. We have shown that, in
the case of limited simulations, we get larger posterior dis-
tributions, and therefore lose constraining power, whether
we use data compression or not. We also show how using
DELFI without compression leads to comparable posteri-
ors. In either case, marginalisation of the neural network
parameters prevents overfitting, and increases the reliability
of the posteriors, at the expense of slightly less confident
posteriors. We show how to do this using cosmoSWAG, the
first application of Stochastic Weight Averaging to cosmol-
ogy. Finally, we show that marginalisation is even more
important in the case of simulations that do not perfectly
capture the physics of the data. In that case, DELFI without
marginalisation can lead to strongly biased results. There-
fore, in the likely scenario of imperfect simulations, we
strongly recommend adding marginalisation to your SBI
analysis.
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Nonnenmacher, M., and Macke, J. H. Flexible statistical
inference for mechanistic models of neural dynamics.
Advances in neural information processing systems, 30,
2017.

https://getdist.readthedocs.io
https://getdist.readthedocs.io


Robust SBI in Cosmology with BNNs

MacKay, D. J. Bayesian neural networks and density net-
works. Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 354(1):73–80, 1995.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and
Wilson, A. G. A simple baseline for bayesian uncer-
tainty in deep learning. Advances in Neural Information
Processing Systems, 32, 2019.

Makinen, T. L., Charnock, T., Alsing, J., and Wandelt, B. D.
Lossless, scalable implicit likelihood inference for cos-
mological fields. Journal of Cosmology and Astroparticle
Physics, 2021(11):049, 2021.

Mandt, S., Hoffman, M. D., and Blei, D. M. Stochastic gra-
dient descent as approximate bayesian inference. arXiv
preprint arXiv:1704.04289, 2017.

Papamakarios, G. and Murray, I. Fast ε-free inference of
simulation models with bayesian conditional density es-
timation. Advances in neural information processing
systems, 29, 2016.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. Advances in
neural information processing systems, 30, 2017.
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Table 1. The prior distribution used to generate simulations.

PARAMETER PRIOR

H0 U(50, 90)
Ωbh

2 U(0.01, 0.05)
Ωch

2 U(0.01, 0.5)
log(1010As) U(1.5, 3.5)
ns U(0.8, 1)

A. Prior
Table Tab. 1 shows the prior distributions for the cosmological parameters used to generate our suite of simulations. In this
table, H0 is the Hubble parameter in km s−1 Mpc−1, Ωb and Ωc are the energy density of baryons and cold dark matter
respectively, h is the reduced Hubble parameter (h = H0[km s−1 Mpc−1]/100), and As and ns are the amplitude and tilt
of the primordial power spectrum. This choice of parameter space is the one typically adopted by CMB analyses (Aghanim
et al., 2020).

Note that our simulations assume a flat ΛCDM cosmology, and fix the optical depth to reionization to τre = 0.06, and the
Planck calibration parameter to APlanck = 1.

B. Mixture Density Network
In this section, we describe the Mixture Density Network (MDN), used for compression-free DELFI introduced in Sec. 3.
Our MDN is simply a neural network, taking as inputs the data, and outputting nout outputs, where

nout =

[
nθ + nθ ·

(nθ + 1)

2
+ 1

]
+ ncomp. (1)

with nθ the number of parameters in the parameter space (in this case 5), and ncomp is the number of components in our MDN
(which we set to 3). In this equation, the first term inside square brackets represents the means of the Gaussian distributions
µ, the second term are the non-zero elements of the lower triangular matrix obtained from a Cholesky decomposition of the
covariance matrix Σ, and the last one is the weight of that component of the Mixture Density Network α. Therefore, this
neural network directly gives us an estimate of the posterior distribution as:

P (θ|D) =

ncomp∑
i=1

αi(D) ·N(θ|µi(D),Σi(D)), (2)

where θ and D and the parameters and data respectively.

C. Validation
When we know the true parameter values, as is the case in the analysis using a synthetic data vector of Subsection 4.2, we
can calculate the excess probability of the true parameter values. We do this by estimating the probability of a large number
of samples from our posterior and calculating the percentage of those samples with a probability smaller than the probability
of the true parameters. Therefore, a small excess probability means that the true parameters are very unlikely, and our SBI
analysis is very likely to be biased.

To check if our SBI analysis is biased, we need to repeat this excess probability calculation for numerous validation
simulations, and check if the distribution of excess probabilities is uniform (Levasseur et al., 2017; Hermans et al., 2021;
Lemos et al., 2022). Equivalently, we can calculate the coverage probability, as the cumulative distribution function of the
expected probabilities, and then compare it with the expected coverage probability.
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Figure 4. Validation of the default analysis shown in Fig. 2.

C.1. Validation of the default analysis

We first apply this validation test to the analysis of Subsection 4.1. The results are shown in Fig. 4. As discussed in the
main text, the no compression case gets good results before marginalisation, and in fact, marginalisation leads to very
underconfident posteriors even when we use a small scale hyperparameter. This is because the marginalisation case uses the
average of the weights over the SWA training. On the other hand, the compression case gets good posteriors, even when
before we use marginalisation.
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Figure 5. Validation of the generalization analysis shown in Fig. 3.
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C.2. Validation of the generalization analysis

We next apply this validation test to the analysis of Subsection 4.2. For that, we add the extra noise at ` > 1000 for all
the simulations in the validation set. The results are shown in Fig. 5. In this case, adding marginalisation allows us to get
posteriors of the correct size, with and without data compression.

D. Tuning the Scale Hyperparameter
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Figure 6. Illustration of how the SWA scale hyperparameter can be calibrated using the validation test described in Appendix C. A larger
scale factor leads to more underconfident posteriors, therefore it can be modified to get as close as possible to the diagonal.

As described in the main text, the SWA algorithm allows us to rescale the covariance matrix by a scale hyperparameter, to
correct for the fact that the covariance matrix can depend on the learning rate used (Maddox et al., 2019). In this work, we
adjust the scale hyperparameter using the validation test described in Appendix C. More specifically, we adjust the scale
so the line in our coverage probability plots gets as close as possible to the diagonal, erring on the side of underconfident
posteriors, to avoid biased results. This is illustrated by Fig. 6, which shows this calibration performed for the DELFI with
no compression analysis applied to noisy data vectors of Subsection 4.2. In the figure, we see that a scale of 0.1 leads
to overconfident posteriors, and even a scale of 0.5 is too overconfident. When we raise the scale to 1, we find that the
line is predominantly under the diagonal, therefore we set the hyperparameter to that value. The advantage of tuning this
hyperparameter is that it does not require retraining the network, and therefore different values can be tested fast.

In this work, we used approximate criteria consisting of looking at the coverage probability plots. In future work, we will
explore more exact tests and algorithmic tuning of the scale hyperparameter.
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