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Abstract
Stellar spectra encode detailed information about
the stars. However, most machine learning ap-
proaches in stellar spectroscopy focus on super-
vised learning. We introduce Mendis, an unsu-
pervised learning method, which adopts normal-
izing flows consisting of Neural Spline Flows and
GLOW to describe the complex distribution of
spectral space. A key advantage of Mendis is
that we can describe the conditional distribution
of spectra, conditioning on stellar parameters, to
unveil the underlying structures of the spectra fur-
ther. In particular, our study demonstrates that
Mendis can robustly capture the pixel correla-
tions in the spectra leading to the possibility of
detecting unknown atomic transitions from stellar
spectra. The probabilistic nature of Mendis also
enables a rigorous determination of outliers in ex-
tensive spectroscopic surveys without the need to
measure elemental abundances through existing
analysis pipelines beforehand.

1. Introduction
As probes of stellar nucleosynthesis, stellar spectra provide
an unparalleled testbed for atomic physics in the era of high-
resolution stellar spectra from surveys such as GALAH
(Buder et al., 2021) and APOGEE (Majewski et al., 2017).
They offer a window into identifying new atomic lines,
which may otherwise evade the notoriously difficult ab initio
quantum mechanics calculations (Hasselquist et al., 2016;
Cunha et al., 2017). Stellar spectra also reveal the funda-
mental properties of stars, including their stellar parameters
(temperature, surface gravity, and global metallicity) and
their chemical composition, which holds the key to unravel-
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ling the evolutionary history of our Milky Way galaxy.

Our ever-expanding power to collect spectra has called for
more advanced machine learning methods to analyze them.
However, most have focused on supervised learning to solve
a label determination problem when analyzing spectroscopic
data with machine learning (Ness et al., 2015; Ting et al.,
2019), which is somewhat limiting. On the one hand, there
are only a handful of stars with high-fidelity stellar labels
(stellar parameters and elemental abundances) (Jofré et al.,
2014). On the other hand, due to its inherent complexity,
stellar spectral models elude direct physical modelling, even
as more advanced theoretical prescriptions become available
(Nordlander et al., 2017). This dilemma has often led to
perennial debates regarding the pros and cons of applying
“data-driven” or “model-driven” analysis when dealing with
stellar label determination. Additionally, label determina-
tion through supervised learning projects the data onto some
predefined “known” label space, significantly impeding the
search for exciting unknown outliers.

These challenges pose the question: can we learn from the
spectra themselves without first reducing them to stellar
labels. Unfortunately, unsupervised learning has not seen
the same surge in applications for stellar spectroscopy. Pio-
neering works of Price-Jones & Bovy (2018) and de Mijolla
et al. (2021) employed methods such as Principal Com-
ponent Analysis (PCA) and Variational Auto-Enconders
(VAE) to extract a representation of stellar spectra. How-
ever, these methods are limited in a few key areas. For
example, the PCA framework lacks the flexibility to model
the data, such as modeling conditional distributions, which
are of paramount importance, as we will demonstrate in this
study. The posterior embedding distribution learned in a
VAE often deviates from the prior distribution and is not
able to provide exact likelihood evaluation.

In this study, we explore normalising flows, a class of deep
generative models, to bridge this gap. We will show that this
more principled way of describing the statistical distribution
of stellar spectra through unsupervised learning can lead to
new opportunities, including correlation identification and
out-of-distribution detection.
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Figure 1. Deep normalizing flows for stellar spectra. Our model (Mendis) turns an ensemble of training spectra into a Gaussian base
distribution from which we can perform exact likelihood evaluation and search for out-of-distribution outliers. As normalizing flows are
invertible, they allow us to generate sample from conditional distribution and evaluate all moments and correlations from the distribution.

2. Synthetic Stellar Spectra
Our training data consists of APOGEE-like synthetic high-
resolution stellar (R ∼ 22, 000) spectra generated using
the Kurucz models (Kurucz & Avrett, 1981; Kurucz, 2005;
2017). Kurucz models solve for a 1D stellar atmosphere
with ATLAS2. The atmosphere is then used to generate
realistic spectra through a radiative transfer model with
SYNTHE, assuming Saha and Boltzmann equilibrium. The
spectral simulator allows us to access a varied stellar feature
space as input, namely in effective temperature, surface grav-
ity, metallicity, and elemental abundance space consisting of
C, N, O, Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni
and Cu. We generate 20,000 spectra by uniformly sampling
in temperature between 4300 and 4500 K, surface gravity
between 1.9 and 2.2 dex, and elemental abundance between
-0.1 and 0.05 dex for all elements apart from nitrogen, which
we sample between 0.0 and 0.15 dex. The native resolution
of the Kurucz models is of R = λ/∆λ = 300, 000, where
λ is the wavelength. We convolve this model using the mean
line spread function from the APOGEE observations (Holtz-
man et al., 2015). We further assume a Nyquist sampling;
we store one pixel per APOGEE resolution element ∆λ,
leading to a spectrum with 2405 pixels.

To mimic actual observations, we degrade our spectra to a
signal-to-noise ratio of 300, corresponding to the level of
high-fidelity observed APOGEE spectra. Recall that our
goal is to construct a conditional distribution of spectra given
stellar parameters. Since the ground truth stellar parameters
are often unknown in actual data (but can be estimated from
the color-magnitude diagram or the spectra themselves), we
also assume a 25 K scatter in effective temperature, 0.1 dex
in surface gravity and 0.01 dex in metallicity.

3. Normalizing Flows for Stellar Spectra
In this study, we assume a normalizing flow model to solve
an unsupervised1 task of learning a model that best rep-
resents the distribution p(x) from which the training sam-
ples {xi} were drawn. At its core, the normalizing flow
aims to find a change of variable fθ, such that the trans-
formed variable z ≡ fθ(x) is normally distributed, i.e.
pz(z) = N (O, I), effectively finding an invertible func-
tion that “Gaussianize” the distribution (Dinh et al., 2014;
2016; Kingma & Dhariwal, 2018).

The training task of normalizing flows involves optimizing
the parameters of fθ by maximizing the log-likelihood over
the training set D, L(D) = 1

D
∑

x∈D log p(x), where

px(x) = pz(fθ(x))|det Jf (z)| (1)

and J the Jacobian of the transformation.

In our study, we have x = (S,y) ∈ R2405+3, where S is
the stellar spectrum, and y three stellar parameters, namely
the effective temperature, surface gravity and the metallicity.
Learning the joint distribution p(S,y) allows us to evaluate
the conditional distribution p(S|y) which will prove criti-
cal. While in theory it is possible to model the conditional
distribution directly as done, for example, in Ting & Wein-
berg (2021), in practice training the model on this large
dimensionality is prohibitively difficult.

Architecture: Extensive exploration on architectures such
as RealNVP (Dinh et al., 2016), SurVAE (Nielsen et al.,
2020) and Neural Spline Flows (Durkan et al., 2019) have
led to our final architecture, which we dub the name
Mendis. Mendis composes of an Activation Normaliza-
tion (ActNorm) layer and a GLOW (‘Conv1x1’) operation,
both introduced in Kingma & Dhariwal (2018), followed
by a Neural Spline Flow. The ActNorm layer performs an

1Since this study also assumes stellar parameters, some might
argue that the model should be regarded as weakly supervised.
However, as the stellar parameters are only used as conditional
variables, we opt to stick to the unsupervised terminology.
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Figure 2. Our generative models produce realistic stellar spectra (upper left panel) indistinguishable from the training spectrum (lower left
panel). The probabilistic nature of our models further allows the calculation of the correlation structures between wavelengths and reveals
which atomic transitions at different wavelengths are contributed by the same elements. The middle panel shows the correlation matrix
sorted by wavelengths, and the right panel by elements. The re-indexing is done by taking the former as an adjacency matrix of a graph.

affine transformation and is used to improve convergence
during the training task. GLOW is a block-diagonal linear
transformation that essentially rearranges and mixes the di-
mensions of the input vector before reaching the coupling
layer to maximize information sharing across all the in-
put variables. Finally, the Neural Spline Flow employs a
monotonic rational-quadratic transform that performs a cu-
bic spline transformation on the input (Durkan et al., 2019).
These transforms end up in a tractable Jacobian associated
with their lower diagonal matrix and can be inverted in a
single pass. Hence they allow for fast likelihood evaluation
and sampling, which makes them a powerful choice.

Training approach: A key advantage of normalizing flows,
as opposed to other generative models such as Generative
Adversarial Networks, is that the maximum likelihood loss
function is resilient against mode collapse (Bond-Taylor
et al., 2021). However, this comes with the cost. As already
alluded to in Equation 1, normalizing flows require neural
networks to be invertible and have tractable and efficiently
computable Jacobian. This stringent constraint often makes
normalizing flows less expressive. As such, we found that an
extensive normalizing flow is needed to deal with the consid-
erable dimensions in the spectral space where x ∈ R2405+3.
We choose a normalizing flow with 20 units of ActNorm,
GLOW and Neural Spline coupling layer. This architecture
choice leads to a final network with approximately a billion
parameters.

Our code is made multi-node multi-GPU parallelized across
16 Nvidia A100 GPUs using the Distributed Data-Parallel
functionality of PyTorch to train this massive network.
We optimize our parameters using Adam (Kingma & Ba,
2014), adopt a learning rate of 5× 10−6 and train for 3,000
epochs. Training across 16 A100 takes approximately 7
hours. All our codes are made available on Github.

4. New Frontiers in Stellar Spectroscopy
In the following, we present two applications to demonstrate
the potential of normalising flows for stellar spectroscopy
by harnessing their unique capabilities of describing the
underlying probabilistic distribution of the spectra.

Unsupervised Learning of Atomic Features: Although
spectra are vectors with thousands of dimensions (pixels
at different wavelengths), they are also remarkably simple.
Most pixels are highly correlated due to the underlying
physics: the absorption features are formed from different
atomic transitions, resulting from quantum mechanics. As
various elements have distinct atomic transitions at differ-
ent wavelengths, the underlying correlation structures of
spectral are therefore tell-tale signs of contributions from
specific elements, but with one caveat. Apart from the ele-
mental abundances, stars with different stellar parameters
will also alter the opacity of the stellar photosphere and
hence the emergent spectrum. Therefore, if we were to eval-
uate the correlation matrix from p(S), the correlation matrix
is dominated by the contribution of the stellar parameters,
obscuring the contributions from individual elements.

Modeling the training spectra with Mendis enables a new
window to tackle this problem. More specifically, once we
have trained a robust statistical description of p(S,y), the
model allows us to evaluate all moments of the conditional
distribution p(S|y) through repeated sampling from the nor-
malizing flows at a fixed y. The conditioning will allow
us to eliminate all influence on the spectra from the stellar
parameters, further revealing only contribution from the
chemical composition of the stars. Importantly, this state-
ment holds even if the unsupervised model itself is trained
with a sample without any two stars sharing the same y.

The left panels of Fig. 2 demonstrates how well Mendis
perform in terms of spectral reconstruction. The bottom
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Figure 3. Out-of-distribution detection with Mendis. Various out-
lier classes, such as CEMP stars, stripped stars and rapidly rotating
stars are assigned to have a low likelihood by Mendis compared
to the training data, even though their spectra, as shown in the inset
plots, might not look too dissimilar. Without any predetermined
stellar labels, Mendis provides an automated way to triage outlier
objects of interest, sifting through large spectroscopic data.

panel shows ten examples of a training spectrum x̃, and
the top panel shows their closest counterparts determined
by computing argminz|x̃− f−1

θ (z)|2 from spectra f−1
θ (z)

generated from Mendis. The two are indistinguishable
from each other, demonstrating that our normalizing flow is
a faithful surrogate of the training spectra.

The middle panel further demonstrates the correlation ma-
trix evaluated from p(S|y), where we fix the conditioning
stellar parameters y at an effective temperature of 4300 K,
surface gravity 2.1 dex and solar metallicity. The middle
panel shows the “native” correlation matrix sorted by the
pixel wavelengths. We only show a subset of pixels with
strong absoprtion features. The correlation matrix is sparse
and unstructured because atomic transitions from the same
elements can occur at vastly different wavelengths. To bet-
ter visualize the high-correlation clusters, we then turn the
correlation matrix into an adjacency matrix of a graph and
assume an edge between the two pixels if their correlation is
larger than 0.8. We then use the adjacency matrix to re-index
the original correlation matrix, essentially searching for con-
nected “trees” within the graph. The re-indexed version of
the correlation matrix is shown on the right.

The right panel shows that, by fixing the stellar parameter,
Mendis reveals the striking underlying correlation from
the spectra. Different elements are sorted as block diago-
nals in the correlation matrix. Notably, the high correlation
structure endures even though we have trained using noisy
spectra and labels. The result demonstrates that unsuper-
vised learning could unearth unknown atomic transitions
through empirical data, even though we are entirely agnostic
about their elemental abundances.

Out-of-distribution detection: We have seen many exten-
sive spectroscopic surveys come to fruition in recent years,
collecting tens of millions of spectra. With this vast spectro-

scopic data, there are bound to be many unknown unknowns
lurking in the data. However, supervised learning tends to
project all data to the model “known” space, limiting our
ability to find the exciting outliers.

Mendis, as an unsupervised method, provides a new op-
portunity to sift through high-dimensional information. It
identifies unlabelled unique objects without requiring label
determination beforehand. As Mendis describes the dis-
tribution of spectra p(S), the likelihood for any object can
be simply evaluated according to Equation (1). Specifically,
for any new datum S̃, the likelihood p(S̃) evaluates if S̃ is
within the distribution p(S) spanned by the training set, or
if it is something that the model has not encountered.

As a proof of concept, here we built three classes of some
of the more sought after “known unknowns” in the study
of galaxy evolution (Carollo et al., 2014; Götberg et al.,
2019, e.g.,). Particularly, we generate from the Kurucz
models spectra from carbon-enhanced metal-poor (CEMP)
stars (−2.0 < [Fe/H] < −1.5 and 1 < [C/Fe] < 2),
rapid-rotating stars (vmacro > 20 km/s), and stripped stars
(effective temperature= 4500− 7000K, surface gravity=
4.5− 6). Fig. 3 shows that directly using only the spectra,
Mendis successfully discriminates between the training
set and these extreme-valued test samples. Mendis assigns
a low likelihood to these outlying test samples, signaling
that they are objects of interest and merit follow-ups.

While we study known unknowns in this case study, we em-
phasize that Mendis is completely agnostic about stellar
labels. It simply assigns a low likelihood to spectra that do
not look like anything else in the training data and can be
generalized to true unknown unknowns. Our results demon-
strate that Mendis can serve as a generic spectral broker
for any spectroscopic surveys, independent to existing label
determination pipelines, to triage for outliers.

5. Prospects and Future Directions
A common criticism of unsupervised learning is that it often
lacks interpretability. This study shows that this needs not to
be the case. Unsupervised learning with normalizing flows
retains its interpretability, as demonstrated by Mendis’s
ability to identify pixel correlations. Besides, Mendis
also provides a more principled way to perform out-of-
distribution detections. But more generally, the statistical
description of the distribution of spectra through Mendis
has a wide range of applications beyond the few case studies
explored here. For example, Mendis can serve as a bridge
for supervised and unsupervised learning – the learned dis-
tribution can serve as the prior distribution for domain adap-
tion to close the model-data synthetic gap (O’Briain et al.,
2021). Additionally, the distribution can serve as the basis
for semi-supervision and few-shots learning with a limited
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number of stars with high-fidelity labels.

Although Mendis holds many promises, it has much room
for improvement. Notably, since spectra lack obvious physi-
cal symmetry, currently, a “brute-force” large normalizing
flow with a billion parameters is chosen to depict the spec-
tral distribution robustly. Recent normalizing flow attempts
in cosmology have taught us that embedding physical knowl-
edge (in cosmology, spherical symmetry) can significantly
simplify the architecture (Dai & Seljak, 2022). Since most
information in spectra is encoded in their pixel correlations,
we posit that preprocessing the data with self-attention mod-
ules to pre-learn the pixel correlations might lead to a more
compact architecture. Despite all the challenges, deep nor-
malizing flows pave the way to fully harnessing information
from the ongoing and forthcoming spectroscopic surveys
(4MOST, SDSS-V), allowing us to finally “reach the stars.”
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Clark, J. T., Čotar, K., da Costa, G. S., de Grijs, R., Feuil-
let, D., Horner, J., Kafle, P. R., Khanna, S., Kobayashi,
C., Liu, F., Montet, B. T., Nandakumar, G., Nataf, D. M.,
Ness, M. K., Spina, L., Tepper-Garcı́a, T., Ting, Y.-S., Tra-
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