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Abstract

Chemical kinetics plays an important role in gov-
erning the thermal evolution in reactive flows
problems. The possible interactions between
chemical species increase drastically with the
number of species considered in the system. Var-
ious ways have been proposed before to sim-
plify chemical networks with an aim to reduce
the computational complexity of the chemical
network. These techniques oftentimes require
domain-knowledge experts to handcraftedly iden-
tify important reaction pathways and possible sim-
plifications. Here, we propose a combination of
autoencoder and neural ordinary differential equa-
tion to model the temporal evolution of chemi-
cal kinetics in a reduced subspace. We demon-
strated that our model has achieved a close-to
10-fold speed-up compared to commonly used
astro-chemistry solver for a 9-species primordial
network, while maintaining 1 percent accuracy
across a wide-range of density and temperature.

1. Introduction
Chemistry plays a key role in regulating the cooling and
the thermodynamical properties of the gas in astrophysi-
cal envirnoment. Chemical species are fundamental to our
understanding of the formation of stars with different met-
alicities (Omukai, 2000; Omukai et al., 2005), interstellar
medium (Gong et al., 2017), protoplanetary disk evolution
(Kamp et al., 2017), early universe (Richings et al., 2014a;b;
Smith et al., 2017) and etc.

The chemical network kinetics can in general be described
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as a initial value problem

dy

dt
= f(t,y),

y(t) = y(0) +

∫ t

0

f(t′,y(t′))dt′,

where y(t), the state vector, corresponds to the chemical
abundance, and the thermal energy at a given instant in time
t. f specifies the interactions and dynamics among different
species and guides the evolution of the state vector with
time.

Scientific communities have been taking advantage of the
recent advancement in deep learning (Champion et al., 2019;
Vinuesa & Brunton, 2021; Brunton et al., 2020; Vlachas
et al., 2022) to model dynamical systems. Many, if not all,
of these approaches seek to identify the low-dimensional
coordinates for an inherently high-dimensional systems that
can reconstruct the dynamics in the physical space with less
computational cost. It has a long history in the community
of fluid dynamics. These are often termed as reduced-order
models and are closely related to dimension reduction tech-
niques like principal orthogonal decomposition, principal-
component analysis, dynamic-model decomposition. The
introduction of autoencoders (Baldi & Hornik, 1989; Good-
fellow et al., 2016) generalized these powerful techniques
from learning linear subspace to learning coordinates on
a curved manifold and have shown to improve greatly the
performance of classical ROM models (Vinuesa & Brunton
(2021) for a detailed recent review).

Recently, data-driven methods have been introduced to study
chemistry in astrophysical environments. Grassi et al. (2021)
applied the autoencoder with a combination of a latent fidu-
cial chemical network to simplify a 29-species chemical
network with 224 reactions into a reduced network with 5
species and 12 reactions. Their work has demonstrated a sig-
nificant (65-times) speed-up. However, this study is limited
to a constant density, temperature and cosmic-ionization
rate environment.

In this work, we expand on the model proposed by Grassi
et al. (2021) with a modified architecture and apply it to a
9-species primordial chemical network problem. Instead
of focusing on a fixed density, and temperature grid, our
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proposed model is trained and evaluated on a snapshot taken
from a full cosmological volume, with density ranging from
10−28 − 10−12 g cm−3 and temperature ranging from 50−
2000K. We address the two questions: 1.How accurate
could neural network based reduced system be? 2. How
much speed up could we gain with reduced models?

2. Data
To train our proposed model, physically realistic initial con-
ditions are taken from a snapshot of a full cosmological sim-
ulations of first stars with the open-source simulation code-
base Enzo (Bryan et al., 2014). The density and tempera-
ture considered spans 14 and 2 orders of magnitudes. The
detail of the simulations and the phase-space distribution of
the initial conditions are outlined and shown in Appendix
A. The chemical abundances and thermal energy from the
simulation grid cell are taken as initial conditions and are
evolved for one freefall time with logarithmically-spaced
timesteps to capture the wide range of dynamical behav-
ior across different timescale with the meta-solver Dengo
(Tang & Turk, In Prep) and the ODE integrator Sundials
CVODE (Hindmarsh et al., 2005). Note that the spatial in-
formation of each cell is discarded. In this study, we have
limited ourselves to studying the 9-species network which
includes H2,H

+
2 ,H,H+,H−,He,He+,He++, e− and ther-

mal energy. The total state space vector x ∈ RN lives
in 10 dimension space. We refer interested readers to the
Grackle method paper (Smith et al., 2017) for a more
in-depth discussion of the 9-species network.

Figure 1. A Schematic of our proposed model to evolve the sys-
tem for one timestep. The encoder Eθ takes the initial condition
x0 ∈ Rn and maps it into the latent space z0 ∈ Rm. The neural
ODE adopted is an autonomous system that does not explicitly
dependent on independent variables i.e t. zt can be obtained by
integrating the neural ODE from t = 0 to t. The Decoder Dθ

decode the latent vector zt alongside the initial latent vector and
the back to the abundance space xt,pred.

3. Model
Our proposed model consist of three separate neural net-
works, the Encoder Eθ, Decoder Dθ, and the neural ODE
function fθ and a schematic of the architecture is shown
in Figure 1. The overall model can be specified with the
equations below.

z0 = Eθ(x̃0), x ∈ Rn

dz

dt
= gθ(t, z), z ∈ Rm (1)

zt = z0 +

∫ t

0

gθ(zt′)dt
′

x̃t,pred = D̃θ(zt)

xt,pred = Dθ(zt, z0, x0)

The encoder Eθ is a learnable function that takes the log-
normalized state vector as input x̃ ∈ Rn, and maps it to the
latent space z ∈ Rm. In our experiments, the dimension
of the state vector n and the latent vectors m are 10 and
3 respectively. Hereafter x̃ corresponds to log-normalized
state vector and x refers to the unnormalized state vector.
The RHS function gθ defines the dynamics of the ODE in
the latent space. The encoder Eθ : Rn → Rm and the
ODE function gθ : Rm → Rm are parametrized with a
multi-layer perceptron (MLP) with 4 layers and 32 hid-
den units with the ELU activation function. In order to
limit the potentially arbitrarily large dz

dt learnt by the neu-
ral ODE network, we have further applied an additional
tanh activation with a learnable scale factor sz ∈ Rm to
stabilize the flow field learned by the neural network, i.e.
dz
dt = sz ◦ tanh(MLPθ(z)/ sz). By restricting the limit
of the dz

dt to between [−sz, sz], it is empirically effective at
stabilizing training in our experiments.

As for the decoder Dθ, we have experimented with two dif-
ferent architectures. One of them is a MLP D̃θ : Rm → Rn

that takes the latent vector z as input and output the abun-
dance in log-normalized space x̃ ∈ Rn. We termed it
the “vanilla decoder”. It is also parameterized with a 4-
layer MLP with 32 hidden units with ELU activation func-
tion. This setup is similar to the one proposed in Grassi
et al. (2021), except that in our work the latent network
dynamics is replaced with a more versatile MLP gθ. We
have also device a new type of decoder that incorporates
the initial condition of the ODE Dθ : R2m+n → Rn,
xt,pred = x0 ◦ exp (s ◦ MLPθ(zt, z0, x̃0)). Here ◦ corre-
sponds to elementwise multiplication.

Instead of directly learning the mapping from the latent
space z to the abundance space x, we have the decoder
predict the log-variation of the abundance with respect to
its initial abundance. This kind of parametrization also
guarantees the output from the decoder is always positive
definite. s ∈ R+

n here corresponds to a learnable scale
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factor that accounts for the scale over which the abundance
varied across the timescale of interest. For comparison, we
have also used a vanilla encoder-decoder combination with
a single linear layer that mimics a latent space generated
from linear projection.

One of the measure of the dynamical timescale is the
free-fall timescale tff and it can be estimated directly by
tff ≈ 1√

Gρ
, where G is the gravitational constant, and ρ

is the density of the cell. In order to accommodate a wide
range of dynamical timescale of interest, time axis for each
of the trajectory t are normalized by the respective freefall
timescale given by the density implied from the initial con-
dition x0.

The loss function L for each given trajectory is specified
in terms of the true solution xt and the predicted solution
xt,pred as below:

Lpath(x,xpred) =
∑
t

| log(xt)− log(xt,pred)|,

Lrecon(x) =
∑
t

| log (xt)− logDθ(Eθ(xt), z0,x0)|,

Lconserv(x) =Lconserv,H(x)

+ Lconserv,He(x) + Lconserv,e(x)

L = Lpath + λ1Lrecon(x) + λ2Lconserv(xpred)

Lpath corresponds to the absolute log-difference of the pre-
dicted values and the actual trajectory, and Lrecon enforces
that the initial condition is consistently encoded in the latent
space. This is often termed the reconstruction loss in the
context of an autoencoder, where the objective of an autoen-
coder is to reconstruct the state vector x. The total mass
density in hydrogen H and helium He should be kept the
same as the time progress. The net charge of each trajectory
should also stay zero in the reconstructed solution. Lconserv

encourages the system to penalize solutions that do not obey
the law of conservation. λ1, λ2 are both set to unity in the
rest of our experiments. The loss function defined above
is specified for our proposed initial-condition guided au-
toencoder. This is defined similarly for the log-normalized
outputs from the plain decoder.

These three neural networks are optimized jointly to min-
imize the loss function L. We have made used of the
torchdiffeq package to perform ODE integration,
and backpropagation through the ODE solution using the
memory-efficient adjoint method (Chen et al., 2018). We
refer our readers to Appendix B for the details on the im-
plementation and training. The code are made available on
Github1.

1https://github.com/hisunnytang/neuralODE

10−3 1-layer Vanilla Our Model
Lpath 296 74.3 6.10
Lrecon 288 84.2 5.35
Lconserv 2.04 11.8 0.10

Mean Pct. Err. (%) 36.0 9.00 0.97

Table 1. Error Metrics for three of the models experimented. Each
of the loss term is presented in 10−3. The last row corresponds to
the mean percentage error evaluated in the physical space.

4. Results
4.1. Trajectory Prediction and Accuracy

Figure 2. Left-Panel: Relative Error Distribution calculated in the
physical space (not log-normalized space) for the three different
models experimented. Right-Panel: Relative error distribution in
the density-thermal energy phase space our initial value guided
autoencoder. It on average shows an relative error of less than 1%
across the phase space, except for regions with high temperatures.

The summary statistics and the relative error distribution
of the three models on the test-set data is tabulated and re-
ported in Table 1 and in Figure 2. The absolute log error
decreases with increasing model complexity. The one-layer
model which mimics a simple linear projection performs
the worst out of these models. This indicates a simple linear
projection mapping is incapable of finding a good latent
space for proper reconstruction. This also motivates and jus-
tifies the use of a more complicated autoencoder that is able
to capture the non-linear interactions between the chemical
species. Our plain-autoencoder architecture, which shares
the most resemblance with the one proposed by Grassi et al.
(2021), shows on average a 10% relative error. Our pro-
posed initial-value guided decoder architecture achieves the
best performance out of all three models considered with
a relative error of 1%. On the right panel of Figure 2, we
showed the distribution of relative error across the density-
thermal-energy phase space. It shows on average an relative
error of less than 1% across the phase space, except for
regions with high temperatures and high density.

As a demonstration, various initial conditions are drawn
from the test set, and are evolved with our trained models.
The true trajectories are shown alongside with the predicted
trajectories in Figure 3. Despite the wide range of order of
magnitude involved across not only density and temperature,
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Figure 3. Sample Trajectories from various initial conditions with our proposed initial value guided autoencoder. The time axis are all
normalized to the freefall timescale. The dots represent the ground-truth solution generated from Dengo solver with a relative tolerance of
10−6. The lines show the respective trajectories from our latent ODE integration. Different initial conditions are highlighted in different
colors. Except for He and thermal energy, the rest of the species of interest are normalized by the total density and expressed in mass
fractions. Our model is capable of handling initial conditions that spans 10 orders of magnitude in density (can be inferred from the He
Mass Density Panel), more than 2 orders of magnitude in thermal energy across various freefall timescales defined by the density. Sample
trajectories from our 1-layer autoencoder, and vanilla autoencoder is also shown in Appendix C.

but also the species abundances, our model is still capable
of recovering the morphology of the correct trajectories up
to one freefall timescale. We refer our readers to Appendix
C for the trajectories from the rest of the two models.

4.2. Performance Comparison

In this section, we look into the performance of our pro-
posed model and Grackle. The learnt neural ODE, En-
coder, Decoder are exported to TorchScript from the
PyTorch (Paszke et al., 2019) model checkpoint. The
resulting TorchScript model can be run independently
from Python as a standalone C++ program in a production
environment. Similar to the above described procedures,
the abundances are transformed into the latent space and
from latent space to abundances spaces with the Encoder
and Decoder model respectively. The numerical integration
is performed with the CVode (Hindmarsh et al., 2005) with
the neural ODE function learnt in the latent space z. Since
the neural ODE model is fully differentiable, the respec-
tive Jacobian ∂gθ

∂z can be constructed with almost no cost
with the the autograd function available to the PyTorch
model. The table below shows a comparison between our
various proposed models.

The experiments are performed with the test set data
with on Intel(R) Xeon(R) CPU E5-2650 v3 @
2.30GHz with 40-threads OpenMP acceleration. The
TorchScript model are deployed in parallel with batch

Per-cell runtime (10−6s) 0.1 tff tff
Grackle 39.2± 2.8 41.6± 3.1

TorchScipt+CVODE 3.83± 0.05 6.32± 0.10

Table 2. Runtime Comparison in production environment among
the Grackle and Our Model.

size of 2048. The results are shown and tabulated in Ta-
ble 2. Our proposed model with modest parallelization
has achieved an almost tenfold speed up compared to the
widely adopted primordial chemistry solver Grackle on
this particular 9-species model.

5. Discussion and Future Work
We introduce our new architecture for reducing chemical
network in a data-driven way and show that our proposed
architecture is capable of recovering the temporal trajecto-
ries faithfully across a wide-range of initial conditions in a
deployment setting with one-tenth of the runtime compared
to a commonly used astro-chemistry library. We note that
when comparing the performance between our solvers and
Grackle, our models are deployed on CPU only. By ex-
tending the current Torchscript model and its interface
with CVODE to GPU (Balos et al., 2021), we should expect
to see a further speedup in terms of the runtime. The model
can be further improved by adding an additional terms in
the loss function that penalize the stiffness of the latent



Submission and Formatting Instructions for ICML 2021

space dynamics equation. Such regularization can implicitly
enforce the learnt vector field gθ in the latent space to be
smoother and render it easier to integrate.
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A. Cosmological Simulation and Data Sampling
The simulation is initialized at z = 50 in a 0.3 Mpc/h co-moving box with MUSIC (Hahn & Abel, 2011) initial conditions
generator. We have first run a dark matter only simulation to identify the isolated halos of interest with mass ranges between
105 − 106M⊙. These initial conditions are re-centered and generated again based on the location of the most massive halo
identified above. Cells are flagged for refinement if the local Jeans length is not resolved by 64 cells. Evolution timescale is
also limited to a tenth of the thermal timescale. A snapshot at z = 18 is taken as our initial state vector for the generation of
the trajectory dataset.

Figure 4. The phase distribution of the density and temperature of the initial conditions taken from the simulation snapshot. The colorbar
demonstrates the characteristic freefall timescale which spans from 10−3 − 103Myr.

For any user-specified chemistry network, Dengo (Tang & Turk, In Prep) can generate the corresponding RHS function (f ),
the Jacobian function (∂f∂y ) and the interface to solve the system of ODE with integrator Sundials CVODE (Hindmarsh
et al., 2005). The availability of the Jacobian allows for a noticeable speed up in the integration process particular for stiff
ODE system. The relative tolerance of Dengo is set to 10−6 when the trajectory is generated. The output timesteps are
logarithimcally spaced. There are a total of 3068798 number of grid cells. As a pilot study, we limit our dataset to a subset
that is representative of the physical conditions in the simulations. The dataset is sub-sampled on a 64× 64× 64 grid of
density, temperature and H2 mass fraction, where in each unique bin, 5 samples are select. This leaves us with 114401 cells.
It is split into train-validation-test set with a ratio of 0.8 : 0.1 : 0.1 The data analysis and data extraction are performed with
yt (Turk et al., 2011).

B. Model and Training Details
The models outlined in Section 3 are all implemented in PyTorch (Paszke et al., 2019). The models are trained with Adam
optimizer with an initial learning rate of 10−3ReduceLROnPlateau learning rate scheduler with default parameters and
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Figure 5. Training and validation loss for the three models experimented in this work.

a minimum learning rate of 10−6. The training is stopped early with a patience of 5 epochs. The training and validation
curve for the various models are shown in Figure 5.
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C. Trajectories of 1-layer, and Plain Autoencoder architecture
Similar to Fig. 3, the trajectories for various initial conditions are shown for the 1-layer model, and the plain autoencoder
model. Our proposed model shows a

Figure 6. Trajectory Predictions from our 1-layer autoencoder model

Figure 7. Trajectory Predictions from our Plain autoencoder model
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D. Error Distribution of the 1-layer, Plain Autoencoder and our model

Figure 8. The error distribution of the three models presented in density-temperature phase space


