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Abstract

Forward modeling approaches in cosmology seek
to reconstruct the initial conditions at the begin-
ning of the Universe from the observed survey
data. However the high dimensionality of the pa-
rameter space poses a challenge to explore the
full posterior with traditional algorithms such as
Hamiltonian Monte Carlo (HMC) and variational
inference (VI). Here we develop a hybrid scheme
called variational self-boosted sampling (VBS)
that learns a variational approximation for the
proposal distribution of HMC with samples gener-
ated on the fly, and in turn generates independent
samples as proposals for MCMC chain to reduce
their auto-correlation length. We use a normaliz-
ing flow with Fourier space convolutions as our
variational distribution to scale to high dimen-
sions of interest. We show that after a short initial
warm-up and training phase, VBS generates bet-
ter quality of samples than simple VI and reduces
the correlation length in the sampling phase by a
factor of 10-50 over using only HMC.

1. Introduction
Forward modeling approaches for cosmological analysis
seek to infer cosmological parameters by doing a full field
based analysis wherein we compare our simulation predic-
tions with the observed data such as galaxies at the level of
the individual objects. Since these approaches do not rely
on any compressed summary statistics of the data, they in
principle maximize the amount of information that can be
extracted from cosmological surveys. The challenge how-
ever is that to simulate the survey data at field level, we need
to know both, the cosmological parameters and the phases
of the initial conditions1 at the beginning of the Universe
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(i.e. the initial distribution of matter field in the Universe).
Since both of these are unknown, we now need to infer them
both from the data simultaneously. Recent works have taken
a Bayesian approach to this inference (Jasche & Wandelt,
2013; Seljak et al., 2017; Modi et al., 2021). In this, we
combine the prior on the phases (z) and the cosmological
parameters (Λ) with the likelihood model of the data (y0)
to write a posterior for the parameters

p(z,Λ|y0) ∝ p(y0|z,Λ)p(z)p(Λ) (1)

where we are forced to drop the evidence term p(y0) which
cannot be evaluated. This inference is challenging primarily
for two reasons- the high dimensionality of the initial phases
which can be in millions, and the expensive cosmological
forward models required to evaluate the likelihood term.

Cosmologists use differentiable forward models (Modi et al.,
2020; Böhm et al., 2021) to access gradient based algorithms
and tackle this challenge. The simplest inference is to recon-
struct a maximum-a-posterior (MAP) estimate (Modi et al.,
2018; 2019) but this provides only a point estimate. A more
robust approach to infer full posterior is to use Hamiltonian
Monte Carlo (HMC) (Neal et al., 2011; Wang et al., 2014;
Kitaura et al., 2014). However the successive samples gen-
erated by HMC are correlated and in high dimensions these
correlation lengths can be hundreds of samples long. Hence
HMC can be prohibitively expensive for scaling up to the
future cosmological surveys.

In this work, we propose a hybrid approach to inference
by learning a proposal distribution and combining it with
HMC. We call it variational boosted sampling (VBS). The
goal is for the proposal distribution to generate independent
samples that either lie in the target distribution directly, or
can propagate to the same with short Markov chains. We
parameterize this proposal distribution as a normalizing flow
(NF) (Kobyzev et al., 2020) which is trained on the fly us-
ing samples from the MCMC chain itself. To scale to high
dimensionality of the the initial conditions, our NF uses
Fourier based convolution that exploit rotational and trans-

1The initial conditions are predicted to be a zero-mean Gaus-
sian random field. Hence they can be reparameterized as an ampli-
tude (variance), which is only a function of cosmological parame-
ters, and a stochastic component at every point which we refer to
as phase of the initial conditions (this corresponds to the particular
realization draw of our Universe).
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lational symmetries of cosmological fields (Dai & Seljak,
2022), see appendix for details. Similar approaches have
been proposed to speed up HMC by improving the geometry
of the posterior distribution with a transport map (Hoffman
et al., 2019; Naesseth et al., 2020), and to learn a global
sampler that assists local chains (Gabrié et al., 2021).

In the landscape of variational inference (VI) wherein one
learns a parametric form for the target distribution(Blei et al.,
2017), our learnt proposal distribution can also be viewed
as a variational approximation to the target distribution. The
short Markov chain serve a dual purpose- they correct the
samples generated from the learnt approximation, while also
generating samples from the true target distribution to train
the variational distribution using more powerful forward
(inclusive) Kullback-Leibler (KL) divergence.

We begin by setting up our cosmological inference problem
formally (section 2), present our hybrid sampling scheme
(section 3) and compare its performance with HMC and VI
(section 4). We conclude in section 5.

2. Setup
Our data (y0) is the dark matter density field on a cubic N3

grid2 where N is the number of grid points or pixels along
each side of the cube. The mock data is generated from
some unknown initial conditions, i.e. initial dark matter den-
sity field (s), which is evolved under gravity with a realistic
forward model (f ) to simulate a final dark matter field (y)
and then corrupted with a noise model (n). The parameters
to be inferred are the phases of the this Gaussian initial
density field (z ∼ N (0, I)). We keep the cosmology param-
eters (Λ) fixed to their true value to focus on the challenging
high-dimensional part of the problem. The forward model
is the particle displacement predicted by the first order La-
grangian Perturbation theory (Zeldovich Approximation,
ZA). We take our data noise to be Gaussian with known
variance (n ∼ N (0,σ)) corresponding to the shot-noise of
the dark matter particles. Hence we can compute the exact
likelihood for our data and the posterior distribution

π(y0|z) = N (y = f(z),σ) (Gaussian likelihood)
π(z|y0) ∝ π(y0|z)π(z) (Posterior)

Figure 1 shows component fields of our problem: the phases
(z), the initial conditions (s), and the data (y0, final dark
matter with noise). In the last panel, we also show the power
spectra of the data signal and noise for different box sizes
which correspond to different signal-to-noise ratios (SNR).

2Bold-face symbols such as x, y, s, z are N3 vector corre-
sponding to the cubic simulation grid. We refer to these as fields
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Figure 1. An example of the forward model for N=64: first three
panel show component fields projected (summed) along the z-
axis. The last panel shows the corresponding data and noise power
spectrum for two different signal-to-noise ratios (box sizes- L=200
and 500 Mpc/h).

3. Variational self-Boosted Sampling (VBS)
In this section, we propose our hybrid scheme that combines
VI with HMC. HMC draws correct samples from the target
distribution but can be computationally expensive due to
generating correlated samples. VI on the other hand aims
to learn the target distribution by assuming it belongs to a
parametric family, q(ν) and these parameters ν are then es-
timated by minimizing a divergence between the variational
and the target distribution. In variational self-boosted sam-
pling (VBS), we use the samples (zi) generated from HMC
to train a variational approximation q(z;ν) to the target
distribution on the fly and in turn simultaneously make in-
dependent proposals from q(z;ν) in MCMC chain (Gabrié
et al., 2021). As the variational approximation improves
over iterations, it will also become a good proposal kernel
and its samples will be readily accepted, thus reducing the
auto-correlation length of HMC chains.

3.1. Algorithm

Starting from a sample point in the target distribution, our
algorithm can broadly be divided into two phases3- i) learn-
ing phase and ii) sampling phase. The full algorithm is
presented in Algorithm 1 but briefly, the two phases are:

• Phase I, Learning Phase:

3We have assumed that we have access to a sample from the
target distribution to initialize from. If this is not the case, there is
a burn-in phase to initialize from a random point and reach such a
sample. However since this is identical to HMC, we do not include
it explicitly as a part of the algorithm.
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Algorithm 1 Variational (self-)Boosted Sampling

input : Initial sample from the target distribution z0;
variational family q(z;ν); target distribution (posterior)
π(z|y0); annealed target distribution for VI π∗(z|y0);
step-size for HMC ε; step-size for training εq; number
of leapfrog steps L; mass matrix M ; number of HMC
iterations for training N1; number of samples to generate
after training N2; probability of generating proposal from
VI distribution pjump

set i=0 {Phase 1, Learning}
for i = 0 to N1 do

zi+1 ← HMC step(zi, π, ε, L,H,M)
Sample B = {z(1)...z(B)} uniformly from {z1...zi}
L = −

∑
B log q(z(i);ν)

ν ← ν − ε∇νL {Optimization}
end for

{Phase 2, Sampling}
for i = N1 to N2 do

if Uniform(0, 1) ≥ pjump then
zi+1 ← HMC step(zi, π, ε, L,H,M)

else
z ∼ log q(z;ν)

α = π∗(z)q(zi;ν)
π∗(zi)q(z;ν)

zi+1 ← z with probability α, otherwise zi+1 ← zi
end if
Sample B = {z(1)...z(B)} uniformly from {z1...zi}
L = −

∑
B log q(z(i);ν)

ν ← ν − εq∇νL {Optimization}
end for

output : {z1...zM+N}, q(z;ν∗)

In this phase we only run vanilla HMC chains to gen-
erate samples (zi) from the true posterior. We simul-
taneously use these samples to learn the variational
distribution by maximizing the log-probability of these
samples: ν∗ = argmaxν

∑
zi∼π(z|y0)

log q(z;ν).
We do not thin the chain i.e. we use all the samples
which are correlated. This phase lasts until the vari-
ational approximation learns the distribution of the
current samples. Until now, the computational cost of
this phase is practically the same as HMC.

• Phase II, Hybrid Sampling:
In this phase we alternate between (with some pre-
chosen probability, pjump) making proposals from
HMC kernel and the variational distribution. At the
same time, we continue to update the variational dis-
tribution with both, the new and the old samples from
the learning phase. This phase lasts until we have the
requisite number of independent samples.

Note that since we continuously adapt our variational distri-

bution, our approach is not strictly Markovian. However if
the adaptation decreases with iterations, our approach also
becomes Markovian asymptotically. Then for our algorithm
to enjoy asymptotic correctness of MCMC algorithms, we
need a detailed balance (DB) condition for the acceptance of
proposals4. For HMC proposal step of VBS, it is the same
as DB for HMC. For variational proposals, let z1 be the
current sample and z2 be the proposal made from q(z,ν).
Then DB is met if the acceptance probability α of making
the transition z1 → z2 is

α = min

(
1,
π∗(z2)q(z1;ν)

π∗(z1)q(z2;ν)

)
(2)

This is the balance condition to correctly sample from the
distribution π∗(z). Ideally this should be the true posterior
distribution of interest, π(z). However we find that using
this can lead to high variance in the acceptance probability
for our high dimensional posterior distribution. To reduce
this variance, we re-scale the target posterior probability
with the number of grid points π∗(z) = π(z)1/N

3

. In this
view, we then consider the learnt variational distribution
to be a proposal distribution for MCMC wherein we can
quickly reach samples from the target by running a short
chain starting from this proposed point. Hence we alternate
between variational proposal and HMC proposal with a pre-
set probability pjump. We find that pjump ∼ 0.2 gives a good
balance between the quality of samples and the acceptance
rate of proposals from the variational distribution.

4. Results
In this section, we compare our proposed VBS scheme with
HMC and VI, with HMC samples serving as a benchmark
due to their guaranteed correctness. For our experiments,
we consider cosmological simulations with configurations
of box size (L) and the mesh (N) as: (L, N) = (200 Mpc/h,
64), (500 Mpc/h, 64), and (1000 Mpc/h, 128). The first two
of these have different noise levels to compare the effect
of signal-to-noise ratio (SNR) in our data, while the third
allows us to see how well VBS scales to larger problems
(N). For both, VBS and HMC scheme, we run 4 chains for
robustness. We use the same stepsize ε for both and it is fit
by dual averaging scheme (Hoffman & Gelman, 2011). The
number of leapfrog steps L is chosen uniformly between 25
and 50 for every proposal in HMC and HMC steps in VBS.

Based on a few experiments, we set pjump = 0.2 and the
number of samples in training phase N1=500. Note that this
value of N1 leads to only 2 independent samples or less on
the largest scales (see Figure 3) and hence we are initially
training the NF with mostly correlated samples. We found

4We assume here that the learnt variational distribution is er-
godic, which is the second required condition
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Figure 2. Comparing the posterior for different approaches: (left)
We show the mean (solid lines), one- and two-standard deviations
(shaded regions) of transfer function for samples of the phase field
(z) from different approaches for L=200 Mpc/h and N=64 simu-
lations. The red vertical line is the nyquist frequency. (right) We
show the distribution of unnormalized log posterior probabilities,
log p, for the samples generated by different approaches. (first
row) Vanilla HMC samples that act as benchmark, (second row)
VBS samples, (third row) Samples from the variational distribution
(NF) at the end of the second phase and (fourth row) at the end of
the first phase respectively.

that the qualitative performance of our scheme was quite
robust to N1 and pjump within reasonable limits, hence not
requiring much fine tuning. However we note that the actual
quantitative gains can vary as decreasing pjump decreases
the frequency of NF proposals which break auto-correlation.
Similarly we did not fine-tune our neural network architec-
ture for normalizing flows. We used a single layer of Fourier
convolutions with global and mean-field affine transforma-
tions (see Appendix C) for N=64 and N=128 experiments
respectively. Optimizing our architecture further can likely
lead to quantitative improvements in our results.

We begin by verifying the posterior sampled by VBS. Since
it is hard to quantitatively compare the distribution of high
dimensional distributions, we focus on low dimensional
summary statistics- in this case the transfer function which
is the ratio of the power spectrum of samples from the pos-
terior with the power spectrum of the true initial conditions.
We expect the mean of this ratio to be unity on all scales
for samples from the true posterior. Figure 2 shows this dis-
tribution for samples from VBS, HMC as well as samples
generated from the normalizing flow (VI approximation)5

5These NF correspond to VI with forward KL loss. VI with
backward KL performed significantly worse and hence not shown.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

101

102

103

a c

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

101

102

a c

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
k (h/Mpc)

101

102

103

a c

HMC VBS

Figure 3. Auto-correlation length for power in different modes in
HMC and VBS samples. Different points along the same vertical
(k-mode) are four different chains. Different panels show different
experiments with (L, N)=(200, 64), (500, 64), and (1000, 128).

at the end of phase I and II of VBS. The distribution of VBS
samples is consistent with HMC upto the nyquist frequency
(red vertical) while NF samples have much larger scatter.

We also compared the cross-correlation coefficient rc of
these samples with the true initial conditions conditions.
However we do not show it here since the distribution for
HMC and VBS samples was indistinguishable from each
other with both having rc unity on the signal dominated
large scales and zero on the noise dominated small scales.

In the right panel of Fig. 2, we show distribution of the
unnormalized log p values, i.e. the true posterior probabil-
ities of these samples. Samples generated from both the
NF (VI) are of poor quality but the short HMC chains do
markedly improve the quality of these samples and hence
VBS samples much closer to the HMC samples. This shows
that while it is not completely accurate to interpret the vari-
ational distribution as having learnt the target distribution, it
can still serve as a good proposal distribution.

Having established that VBS explores posterior correctly
and generates higher quality samples than VI, we next com-
pare VBS with HMC in terms of their efficacy. We do so
by estimating the auto-correlation length (ac) for the power
in different modes/scales (k) in the power spectrum of the
posterior samples in each chain. These are shown in Fig-
ure 3 for different configurations. For N=64, ac of HMC
samples is O(1000) for high SNR case and O(100) for
low SNR case. This is consistent with the expectation that
the posterior distribution is more complex in high signal
regime and hence harder to sample. On the other hand, the
auto-correlation length of hybrid samples is O(10 − 100)
in both the cases. N=128 case is more challenging for both
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the algorithms, however VBS still gains a factor of at least
5-50x over HMC across scales. The auto-correlation length
for VBS in this case also shows an interesting feature of
increasing until the scale where the SNR∼1 and then drop-
ping again. In the future work, we will investigate how this
affects the inference of cosmological parameters.

5. Conclusions
Forward modeling approaches face the challenging task of
doing inference in high dimensions. In this work, we have
proposed a hybrid scheme called variational self-boosted
sampling (VBS) that combines VI and HMC to reap the
benefits of both. Our approach can be seen as learning
the proposal kernel for HMC on the fly, or alternatively as
a variational approximation to the target distribution with
short chains to correct the learnt approximation. We show
that for different configurations of box size and mesh, corre-
sponding to different SNRs in the data and different scales
of the problem, VBS reduces the auto-correlation length of
samples by a factor of 5-50x over HMC while generating
higher quality samples than VI.
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A. Inference algorithms
In this appendix, we briefly review the two most widely
used approaches for posterior inference, which also form
the building blocks of our hybrid sampling algorithm. These
are- i) Hamiltonian Monte Carlo (HMC) which generates
samples from the posterior directly and ii) Variational Infer-
ence (VI) which learns a parametric form of the posterior
distribution.

A.1. Hamiltonian Monte Carlo (HMC)

Algorithm 2 Single step of Hamiltonian Monte Carlo Sam-
pling

input : current position z0; target probability density π;
step-size ε; number of leapfrog steps L; Hamiltonian
H; Mass matrix for momentum M

1: q0 ← z0 {Assign current sample as the initial position}
2: p0 ∼ N (0, 1) {Sample random momentum of same

shape as q0}
3: i = 0
4: for i = 0 to L do
5: {Integrate Hamiltonian equations for L leapfrog

steps}
6: qi+1, pi+1 ← LEAPFROG(qi, pi, π, ε)
7: i← i+ 1
8: end for
9: H0 ← H(q0, p0, π,M ) {Estimate Hamiltonian Eq. 3}

10: HL ← H(qL, pL, π,M )
11: α← exp(H0 −HL) {Maintain DB Eq. 4}
12: if Uniform(0, 1) ≥ α then
13: z1 ← q0
14: else
15: z1 ← qL
16: end if
output : z1

HMC (Neal et al., 2011) is the most widely used approach
to generate samples from distributions in high dimensions.
It begins by reinterpreting the parameters of interest as a
position vector q ∈ Rd with the associated potential en-
ergy function U(q) = − log π(q) where π(q) is the tar-
get distribution, and introducing an auxiliary momentum
vector p ∈ Rd which contributes a kinetic energy term
K(p) = 1

2pTM−1p, where M is a symmetric positive def-
inite mass matrix. Generally the mass matrix is taken to be
the indentity matrix, M = I . With these, one can construct
the Hamiltonian H : R2d → R as the total energy function
for the state x := (q,p),

H(x) = H(q,p) = U(q) +
1

2
pTM−1p . (3)

To simulate a Markov chain and generate samples from
the target distribution, this physical system is evolved with
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respect to time by following Hamiltonian dynamics. The
Hamiltonian’s equations are numerically evolved by inte-
grating the ODE system using leapfrog integrator. Hence
there are two parameters to be tuned- the stepsize of the
integration ε and the number of leapfrog steps (L) to take
before making a proposal qi.

Proposals generated at the end of each iteration are accepted
or rejected to maintain a detailed balance condition which
guarantees that the samples are generated from the correct
distribution. As per detailed balance, the probability of
accepting a proposal x0 → x1 is

α = min(1, exp(H(x0)−H(x1)) (4)

The complete algorithm for generating proposals is de-
scribed in Algorithm 2.

A.2. Variational Inference

Variational inference (Blei et al., 2017) takes a different ap-
proach from sampling and instead aims to directly learn the
distribution of interest. It assumes that the target distribution
π belongs to a parametric family, q(ν) and these parameters
ν are then estimated by minimizing a divergence between
the variational distribution q(ν) and the target distribution π.
Since this minimization is an optimization, VI is generally
much faster than HMC but does not enjoy the guarantees of
asymptotic correctness same as HMC. In fact, the quality
of VI depends significantly on the the choice of parametric
family and the divergence function.

Algorithm 3 Backward/Exclusive Variational Inference

input : variational family with parameters ν q(z;ν); like-
lihood function π(y0|z); prior π(z); step-size for opti-
mizer ε; maximum number of iterations N ; number of
samples per iteration n

set i = 0
1: for i = 0 toN do
2: {zi...zn} ∼ q(z;ν) {Generate n samples from

variational distribution}
3: ELBO =

∑
zi

log π(y0|zi) + log π(zi)− log q(zi;ν)
4: ν ← ν − ε∇νELBO {Optimization}
5: end for
6: ν∗ ← ν

output : q(z;ν∗)

A.2.1. BACKWARD OR EXCLUSIVE KL DIVERGENCE

The other component of variational inference is the choice
of divergence to be minimized between the variational dis-
tribution and the target distribution. The most commonly
used divergence is Kullback-Leibler (KL) divergence with
the variational distribution as the reference distribution, In

this case its called backward or exclusive KL divergence
and is defined as

DKL(q||p) = Eq(log q − log p)

= Eq(log q(z;ν)− log π(z|y0))

≈
∑

zi∼q(z)

[
log q(zi;ν)− log π(zi|y0)

]
≤

∑
zi∼q(z)

[
log q(zi;ν)− log π(y0|zi)− log π(zi)

]
(5)

where in the third line we have approximated the expectation
with empirical expectation as estimated by the samples zi ∼
q(z;ν) from the variational family. In the last line, we
expand the posterior distribution in terms of the likelihood
and the prior while dropping the evidence term which is a
negative constant with respect to the variational parameters.
This is also called the evidence lower bound (ELBO)

ELBO :=
∑

zi∼q(z)

log π(y0|zi) + log π(zi)− log q(zi;ν)

(6)

For inferring the posterior, backward VI maximizes the
ELBO with respect to the variational parameters.

ν∗ = argmaxνELBO (7)

The full algorithm for this is given in Algorithm 3

A.2.2. FORWARD OR INCLUSIVE KL DIVERGENCE

An alternative to backward KL divergence is the forward
KL divergence which uses the target distribution as the
reference. Then

DKL(p||q) = Ep(log p− log q) (8)
= Eπ(z|y0)(log π(z|y0)− log q(z;ν)) (9)

≈
∑

zi∼π(z|y0)

(log π(z|y0)− log q(z;ν)) (10)

where we have again approximated the expectation with
empirical expectation. Note that since the samples are gen-
erated from the target distribution itself, the first term is
independent of the variational parameters. Thus minimiz-
ing this divergence for variational inference is achieved by
maximizing the log-probability of the samples under the
variational distribution

ν∗ = argmaxν
∑

zi∼π(z|y0)

log q(z;ν) (11)

Looking at this equation, we can see the chicken-and-egg
problem of the forward KL loss—we need samples zi from
the true distribution (e.g., as generated by HMC) to learn
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the variational distribution, but if we had an easy access
to such samples, we would not need to learn a variational
distribution in the first place. Recent works have investi-
gated some ways to get around this, such as with importance
weighing the samples generated from the variational distri-
bution (Naesseth et al., 2020; Bornschein & Bengio, 2014).
However we find that none of these approaches work well
in our case.

B. Validating the posterior
In this appendix, we give the details of the metrics we have
used to validate and compare the posterior samples of VBS
and HMC.

B.1. Distribution of summary statistics

High dimensional distributions are hard to compare quan-
titatively and so we seek a low dimensional mapping to
compare samples from different algorithms. Since our data
model obeys rotational and translational invariance, the
power spectrum of density fields provides a natural low
dimensional candidate. The power spectrum (Pa) of any
field a measures the clustering of the overdensity field δa at
different scales k and is defined as

〈δ̃a(k)δ̃a
∗
(k′)〉 = (2π)3Pa(k)δ3D(k− k′)

where k is the magnitude of the scale and δ3D is the 3-D
dirac delta function. We compare the quality of the posterior
distributions by measuring the distribution of the transfer
function of the posterior samples. Transfer Function (tf )
of these samples is defined as the ratio of power of these
samples with the true initial conditions

tf,i =
√
Pzi(k)/Pztrue(k)

Thus it compares the amplitude of clustering at different
scales. Since we use the same cosmology for data genera-
tion and inference, tf of samples from the correct posterior
should be consistent with unity on all scales.

Though not shown in the text, we also compare the cross-
correlation coefficient, rc, measured in terms of cross power
spectrum, of the posterior samples with the true initial con-
ditions. However the differences in this were not significant
for different algorithms. Note that when both rc and tf are
unity, the two fields being compared are identical.

B.2. Auto-correlation length

Monte Carlo algorithms explore the posterior by generating
samples from it instead of optimizing (learning) a parametric
form of them. In this case it is important to have generated
enough independent samples such that we are confident to
have explored both, the bulk and the tails of the posterior

adequately. Thus the efficacy of such algorithms is measured
with auto-correlation length which is the effective length
(number of samples) between two successive independent
samples.

As discussed above, due to the high dimensional nature
of our problem, we will again work with low-dimensional
summary statistic for quantitiative comparisons. Hence
we compare the efficacy of algorithms by estimating the
auto-correlation length for power spectrum of the posterior
samples. Specifically, for every chain, we measure the
power spectrum Pi(k) for each sample zi and then estimate
the correlation length for each mode kj as

ρj(t) =
1

n

n∑
i=t+1

(Pi(kj)− P̄ (kj))(Pi−t(kj)− P̄ (kj))

(12)
where P̄ (kj) is the mean power in the mode kj across all
samples of that chain and n is the total number of samples.
Then the auto-correlation length (ac) is defined as the scale
where ρj(ac) ≤ 0.1. We want the auto-correlation ac as
small as possible since it implies more independent samples
for the same computational cost.

C. Normalizing Flow
In this section we describe the architecture of our normaliz-
ing flow (NF). Normalizing flows transform a simple base
distribution qB with a transport map Tθ consisting of a se-
ries of invertible, bijective mappings into more complex
distributions of interest (Kobyzev et al., 2020). We use NF
to parameterize our variational family such that it is flexible
enough to capture the target distribution

q(z;ν) = qB(T−1θ (z);νB)|det∇zT
−1
θ | (13)

where the parameters of the base distribution and the trans-
port map compose our variational parameters ν = {νB , θ}.

C.1. Base Distribution

Traditionally when NF are used to learn generative models,
the base distribution consists of a simple distribution with
few or no trainable parameters, such as a standard normal.
However in our case, the target is the posterior of a specific
data realization and this breaks the symmetry of the target
distribution. Hence for our base distribution, we choose
the mean-field normal i.e. q(z;νB) := N (µ,Σ) where µ
and Σ are now the same shape and size as the phase field,
i.e., N3 grids. In our experiments, we find that while fixing
Σ = 1 does not affect our posterior accuracy significantly,
however keeping µ trainable is crucial for any meaningful
inference.
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C.2. Transport Map

The transport map consists of a series of invertible transfor-
mations such that the log-determinant of their Jacobain can
be estimated quickly. Hence NF typically use specialized
coupling layers or autoregressive layers (Dinh et al., 2016;
Papamakarios et al., 2017). However these NF scale poorly
to three dimensional data and large (millions) parameter
spaces.

We take an alternate approach for our transport map that
was recently shown to accurately learn the high dimensional
data likelihood of cosmological fields in (Dai & Seljak,
2022). Motivated by the fact that the cosmological fields
are rotationally and translationally invariant, (Dai & Seljak,
2022) propose constructing transport maps using Fourier-
space convolutions.

C.2.1. FOURIER SPACE CONVOLUTIONS

A convolution in configuration space can be performed as a
product with a transfer function t(k) in the Fourier space.
This transfer function can be element-wise and hence of
the same dimensionality N3 as the parameters. However
for rotational and translational invariant fields, the transfer
function becomes only a function of scales, t(k), which can
be parameterized by a few tens of parameters. Moreover
since the transformation consists of simply multiplying be a
scalar function, the Jacobian is straightforward to estimate.

Thus the overall transformation for a configuration space
field x is

x′ = F−1(tθ(k)F(x)) (14)

where θ are the learnable (variational) parameters and F is
the Fourier transform operation. The transfer function can
be any interpolation function and we model it as a Cubic
Hermite polynomial. Then, the knots values and slopes at
knot positions constitute θ.

C.2.2. ELEMENT-WISE TRANSFORMATIONS

We alternate the Fourier space convolutions with learnable
element-wise transformations Ψφ in the configuration space.

The simplest Ψφ’s are affine (scale and shift) transforma-
tions

x′ = αx + β (15)

with φ = {α, β} as the scale and shift variational parame-
ters. We consider two cases- i) global affine transformations
wherein α and β are scalars and the entire field is shifted and
scaled uniformly, or ii) mean-field affine transformations
wherein α and β are now N3 grids, same as the parameters
x. While ii) increases the number of parameters of our NF
by a lot, it allows us break the constraint of rotational and
translational invariances in our transport map that is made
by using Fourier space convolutions. We find that for N=64,

global affine transformations sufficed but for N=128 using
mean-field affine transformations markedly improved the
quality of inference.

Affine transformations are linear but the element-wise trans-
formations can also be made non-linear. For instance, (Dai
& Seljak, 2022) used monotonic rational-quadratic splines
as non-linear transformations. However in our experiments,
using splines instead of linear transformations did not seem
to significantly affect the quality of posteriors for our toy
model and hence we did not use them for the current experi-
ments.

C.3. Learnt Distribution

Every layer of our NF consists of a Fourier space convolu-
tion followed by an element-wise operation to construct a
unit transformation f = x0 → x1:

x1 = Ψφ(F−1(tθ1(k)F(x0))) (16)

These layers can be stacked and are combined with the base
distribution to parameterize our target distribution.


