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Abstract
Astrophysical surveys present the challenge of
scaling up accurate simulation based inference
to billions of different examples. We develop a
method to train fast, accurate and amortised ap-
proximate posteriors that avoids the biases of e.g.
variational inference. To train our approximate
posterior, we first sample from it, conditioned on
an observation. We then do a few steps of an
MCMC method (we use HMC) to improve the
sample, and we update the approximate poste-
rior parameters to maximize the probability of
the resulting MCMC samples. This allows us to
amortise the posterior implied by any MCMC pro-
cedure. On our astrophysical samples, the amor-
tised approximate posterior is very close to the
true MCMC posterior, yet is approximately five
orders of magnitude faster.

We additionally provide a library to facilitate the
use of this method for upcoming surveys:
https://github.com/MaximeRobeyns/SPItorch.

1. Introduction
Inferring galaxy parameters is an important task for extra-
galactic surveys. For example, physical parameter estima-
tion has led to significant discoveries in the domain of galaxy
evolution such as the cosmic star-formation history (Madau
et al., 1998; Madau & Dickinson, 2014; Elbaz et al., 2007).

As astronomical surveys become larger, the need for
computationally-efficient methods for inferring physical
properties underlying these observations becomes pressing.
For instance the Dark Energy Spectroscopic Instrument sur-
vey (Aghamousa, 2016) will produce tens of millions of
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observations, the Euclid survey (Racca, 2016) is projected
to capture about 10 billion sources, while the Vera C. Ru-
bin Observatory is projected to capture tens of billions of
sources annually (Ivezić, 2018).

Current approaches to inferring physical galaxy parameters
often involve creating a forward model for galaxy emissions,
and using Markov-Chain Monte Carlo (MCMC) methods
(MAGPHYS, CIGALE, PROSPECTOR, AGNFitter, Fortesfit)
to invert that forward model. In this approach, the model
parameter space is probed on the fly during sampling, and
incur a computational cost that renders them infeasible for
use in the large-scale surveys described above.

Recently, the use of simulation-based inference (SBI) has
enabled drastically faster parameter inference over current
MCMC approaches (Zhang et al., 2021; Hahn & Melchior,
2022). Existing forward-modelling libraries and software
for creating spectral energy distribution (SED) models can
readily be applied to SBI as an implicit statistical model; that
is, a model from which we may draw samples but cannot
evaluate probability densities.

We take inspiration from both synthetic likelihood and pos-
terior density estimation methods to develop a drop-in re-
placement for current photometry MCMC approaches which
is thousands of times faster, while providing equal or better
posterior estimates for normal galaxies and AGN.

1.1. Method

We use PROSPECTOR to define an SED forward model de-
scribing the relation between physical galaxy parameters
and the photometric observations from a given survey. This
mapping from physical parameters θ ∈ Rd to Gaussian-
noise corrupted photometric observations x ∈ Rn results in
our implicit likelihood p(x|θ) (or simulator).

Using a suitable parameter prior p(θ), we simulate a training
dataset {(θi,xi)}Ni=1 of samples from the joint p(θ,x); first
sampling from the prior θi ∼ p(θ) and then running the
forward model xi ∼ p(x|θi). This is readily parallelisable,
runs in an offline manner, and even for N = 1e7 represents
a small computational cost; completing in under an hour.

We use this dataset to learn two densities, using conditional
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neural density estimation. The neural density estimator
used for both of these models is a sequential autoregressive
network, which we introduce in the next section.

The first density is a crude approximation to the posterior,
qφ(θ|x) ≈ p(θ|x), where the parameters of the density
estimator φ are optimised by maximising the likelihood of
physical parameters drawn from the prior under simulated
observations:

φ
.
= argmax

φ

N∑
i=1

log qφ(θi|xi), (1)

using the ADAM optimiser. Direct posterior estimation is
notoriously difficult since there may only be a sparse set of
simulated training points (θi,xi) in the vicinity of a given
real observation xo (Papamakarios et al., 2019). The aim
of this step is to simply initialise the parameters φ of this
approximate posterior to a sensible value, which will help
during a subsequent HMC training step.

Drawing inspiration from Wiqvist et al. (2021); Glöckler
et al. (2022), we additionally use this simulated dataset
to obtain an approximation to the intractable likelihood
`ϕ(x|θ) ≈ p(x|θ), which we also train using maximum
likelihood

ϕ
.
= argmax

ϕ

N∑
i=1

log `ϕ(xi|θi). (2)

Approximating the likelihood with a neural density estima-
tor affords us a fast, differentiable and reasonably accurate
simulator (see Figure 2 for an evaluation of accuracy), which
can moreover exploit GPU parallelism, making it suitable
for use in the inner loop of a training algorithm. Note that
the likelihood is often much simpler to estimate than the
posterior, since the conditioning information θ is noise-free
and lies on a bounded domain (as defined by p(θ)), in con-
trast to the noise-corrupted observations x used in posterior
estimation.

Training both these density estimators for 10 epochs took
under 2 hours using commodity hardware (NVIDIA RTX

3090). This is comparable to running MCMC inference on
tens of galaxies.

A common challenge in simulation-based inference is the
use of an inaccurate or misspecified model. To account
for possible discrepancies between the SED model and
the observational data, as well as the potential sparsity of
training examples in the vicinity of observations, we in-
troduce an additional training step for the parameters φ of
the neural posterior. In this procedure, we perform further
maximum-likelihood updates to φ on new (θ̂HMC,xo) pairs
generated on-the-fly from a subset of the photometric obser-
vations xo and parameter estimates θ̂ which are obtained via
HMC. The target density for HMC uses the neural likelihood

p(θ̂|x̂) ∝ `ϕ(x̂|θ̂)p(θ̂), and we initialise the HMC chains at
an initial prediction θ̂q ∼ qφ(θ|xo), reducing the need for
burn-in steps. The target density is fully differentiable with
respect to θ, and using deep learning tools (PyTorch) we
parallelise the HMC procedure to work on large θ batches,
further benefiting from GPU compute.

The full method is given in Algorithm 1, returning a neural
density estimator qφ to perform amortised posterior infer-
ence over the physical parameters for a specific survey.

Algorithm 1 Training procedure.
Input: PROSPECTOR forward model p(x|θ), parameter

prior p(θ), observed data Xo.
Output: Approximate posterior qφ(θ|x), for Xo.

1 Simulate {(θi,xi)}Ni=1, where θi ∼ p(θ), xi ∼ p(x|θi).
2 Train approximate posterior using maximum-likelihood:

argmaxφ
∑N
i=1 log qφ(θi|xi).

3 Train a neural likelihood using maximum-likelihood:
argmaxϕ

∑N
i=1 log `ϕ(xi|θi).

4 for each mini-batch of xo in Xo do
5 Draw θ̂q ∼ qφ(θ|xo)
6 θ̂HMC = HMC(init = θ̂q, target dist = `ϕ(xo|θ)p(θ))
7 Train qφ on θ̂HMC; φ← φ+ α∇φqφ(θ̂HMC|xo)
8 return qφ

1.2. Sequential Autoregressive Network

We draw inspiration from both mixture density networks
(Bishop, 1994) and autoregressive models (Germain et al.,
2015) to obtain a simple conditional neural density estimator
which is both fast and expressive.

Autoregressive networks for multivariate density estimation
work by factorising the distribution as a product of nested
conditionals,

q(θ|x) =
D∏
d=1

q(θd|θ<d,x)

= q(θ1|x)q(θ2|θ1,x) · · · q(θD|θd−1, . . . , θ1,x),

thus avoiding the need to compute a potentially expensive
(or even intractable) normalisation constant.

In this work we treat the distribution of each dimension of θ,
q(θd|θ<d,x) as a mixture density network. We additionally
condition each dimension of the posterior on latent variables
zd (termed ‘sequence features’) which govern the relation-
ship between subsequent dimensions of θ. The posterior
model factorises as

qφ(θ|x) =
D∏
d=1

qdφ(θd|θ<d, zd−1,x), (3)
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Figure 1. Sequential autoregressive network architecture, with n-dimensional conditioning information x, and d-dimensional outputs θ.
Each output dimension is modelled by a (truncated) mixture of K Gaussians.

and can be seen as an autoregressive sequence of mixture
density networks with auxiliary latent variables. This archi-
tecture is visualised in Figure 1.2.

1.2.1. ALTERNATIVE APPROACHES

Recent papers using conditional generative models for ac-
celerated posterior estimation have primarily used masked
autoregressive flows (MAFs) as the neural density estimator
(Zhang et al., 2021; Hahn & Melchior, 2022).

However, MAFs trade-off fast likelihood evaluations for
slow sampling time. While evaluations only require a single
forward pass through the MAF owing to the use of MADE
blocks (Germain et al., 2015), the autoregressive structure
means that drawing parameter samples from the posterior
at inference time θ ∼ qφ(θ|x),θ ∈ Rd, requires d forward
passes through the network.

While the SAN architecture also uses autoregressive sam-
pling (unrolling the d forward passes into a single forward
pass), the cost of autoregressive sampling in MAFs is exacer-
bated due to the constraints of normalising flows. Here, the
Jacobian log-determinant of each layer must remain easy
to compute, limiting each layer’s flexibility and resulting in
deeper architectures to retain the same expressiveness as an
unconstrained network.

Hence, sampling from a SAN requires fewer layers, less
memory and is empirically faster (see Table 1.2.1), making it
better suited to performing inference on billions of galaxies.
We also found MAFs to be highly sensitive to the choice of
hyperparameters, while the SAN was far more robust.

2. Results
To evaluate our approach, we use a subset of the Dark En-
ergy Survey (DES, 2005) as the real dataset Xo. We use

Method Device Amortised Single Sample Time (s)

EMCEE CPU 4.82× 10−1

MAF CPU 2.52× 10−4

MAF GPU 7.31× 10−5

SAN CPU 5.73× 10−5

SAN GPU 1.52× 10−6

Table 1. Time to draw a single posterior sample: EMCEE is a
popular sample-based (MCMC) method, MAF is a masked autore-
gressive flow, and SAN is our proposed neural density estimator.

PROSPECTOR for our forward model with realistic magni-
tude distributions and uncertainties, using both stellar and
AGN components. Using a dataset of 10 million simulated
observations, D = {(θi,xi)}1e7i=1, we follow the training
procedure described in Algorithm 1. We describe our full
model architecture and hyperparameters in the supplemen-
tary material (Appendix A).

The success of our method is contingent on having ac-
curate likelihood model. The top-left panel of Figure 2
shows a probability-probability plot for the neural likeli-
hood `ϕ(x|θ) for all 7 filter bands, showing good agreement
between the true forward model and the learned likelihood.

In the top right pane we show a probability-probability
plot for the neural posterior, using 10,000 simulated points.
There is a reasonable agreement between the true CDF and
that of the approximate posterior for all parameters.

We also show SED reconstructions for simulated (x) and
real (xo) observations in the bottom two panes of Figure 2.
We find that our posteriors are estimated as well or better
than EMCEE, in 5 orders of magnitude less time (reducing
posterior sampling times for 10,000 samples from hundreds
of seconds to thousandths of a second).
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Ivezić. LSST: from Science Drivers to Reference De-
sign and Anticipated Data Products. arXiv:0805.2366
[astro-ph], May 2018. doi: 10.3847/1538-4357/
ab042c. URL http://arxiv.org/abs/0805.
2366. arXiv: 0805.2366.

Madau, P. and Dickinson, M. Cosmic star-formation history.
Annual Review of Astronomy and Astrophysics, 52(1):415–
486, 2014. doi: 10.1146/annurev-astro-081811-125615.
URL https://doi.org/10.1146/
annurev-astro-081811-125615.

Madau, P., Pozzetti, L., and Dickinson, M. The Star Forma-
tion History of Field Galaxies. The Astrophysical Journal,
498:106–116, May 1998. ISSN 0004-637X. doi: 10.1086/
305523. URL https://ui.adsabs.harvard.
edu/abs/1998ApJ...498..106M. ADS Bibcode:
1998ApJ...498..106M.

Papamakarios, G., Sterratt, D., and Murray, I. Sequential
Neural Likelihood: Fast Likelihood-free Inference with
Autoregressive Flows. In Proceedings of the Twenty-
Second International Conference on Artificial Intelli-
gence and Statistics, pp. 837–848. PMLR, April 2019.
URL https://proceedings.mlr.press/v89/
papamakarios19a.html. ISSN: 2640-3498.

Racca. The Euclid mission design. arXiv:1610.05508
[astro-ph], pp. 99040O, July 2016. doi: 10.1117/12.
2230762. URL http://arxiv.org/abs/1610.
05508. arXiv: 1610.05508.

Wiqvist, S., Frellsen, J., and Picchini, U. Sequen-
tial Neural Posterior and Likelihood Approximation.
arXiv:2102.06522 [cs, stat], June 2021. URL
http://arxiv.org/abs/2102.06522. arXiv:
2102.06522.

Zhang, K., Bloom, J. S., Gaudi, B. S., Lanusse, F., Lam,
C., and Lu, J. R. Real-time Likelihood-free Inference
of Roman Binary Microlensing Events with Amortized
Neural Posterior Estimation. The Astronomical Jour-
nal, 161(6):262, May 2021. ISSN 1538-3881. doi: 10.
3847/1538-3881/abf42e. URL https://doi.org/
10.3847/1538-3881/abf42e. Publisher: Ameri-
can Astronomical Society.

http://arxiv.org/abs/1611.00036
http://arxiv.org/abs/1611.00036
http://arxiv.org/abs/astro-ph/0510346
http://arxiv.org/abs/astro-ph/0510346
https://www.aanda.org/articles/aa/abs/2007/22/aa7525-07/aa7525-07.html
https://www.aanda.org/articles/aa/abs/2007/22/aa7525-07/aa7525-07.html
https://proceedings.mlr.press/v37/germain15.html
https://proceedings.mlr.press/v37/germain15.html
https://openreview.net/pdf?id=kZ0UYdhqkNY
https://openreview.net/pdf?id=kZ0UYdhqkNY
http://arxiv.org/abs/2203.07391
http://arxiv.org/abs/0805.2366
http://arxiv.org/abs/0805.2366
https://doi.org/10.1146/annurev-astro-081811-125615
https://doi.org/10.1146/annurev-astro-081811-125615
https://ui.adsabs.harvard.edu/abs/1998ApJ...498..106M
https://ui.adsabs.harvard.edu/abs/1998ApJ...498..106M
https://proceedings.mlr.press/v89/papamakarios19a.html
https://proceedings.mlr.press/v89/papamakarios19a.html
http://arxiv.org/abs/1610.05508
http://arxiv.org/abs/1610.05508
http://arxiv.org/abs/2102.06522
https://doi.org/10.3847/1538-3881/abf42e
https://doi.org/10.3847/1538-3881/abf42e


SPItorch

A. Model and Hyperparameters
Here we describe the network architecture and model hyperparameters used in our experiments.

For the approximate posterior qφ(θ|x), we use sequential blocks with 2 layers, each with 1024 neurons and ReLU activations.
These sequential blocks parametrise a mixture of 10 truncated Gaussians, the boundaries of which ensure that any θ̂
proposals will lie within the support of the prior, which is important for the HMC step1. Latent variables (‘sequence features’)
with 16 dimensions are passed between blocks.

The nerual likelihood `ϕ(x|θ) is both simpler to estimate and will also be evaluated far more often in the highly parallelised
HMC step. We therefore choose a smaller architecture with sequential blocks of width 256 to the benefit of both speed
and memory requirements. We also apply layer normalisation and use ReLU activations. The marginals are modelled as a
mixture of just 3 (non-truncated) Gaussians, and we pass just 8 sequence features between blocks.

We use a simple normalisation scheme where filter values x are prepared by merely taking their logarithm—any features
which are useful for inference, such as colours, may be inferred by the flexible SAN network architecture. We normalise the
parameter values θ to lie uniformly in the [0, 1] range.

1We also tried using a mixture of Beta distribution to enforce boundary conditions. While the quality of the posterior distributions was
good, evaluating a Beta distribution has a greater computational cost and hence yielded longer running times than the truncated mixture of
Gaussians.
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B. Posterior Plot
Figure 3 shows 10,000 samples drawn from the approximate posterior θ̂ ∼ qφ(θ|xo), for a randomly selected observation
xo drawn from the simulated dataset.

The true physical parameters θ used to produce the simulated observation xo are plotted in orange.
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Figure 3. Corner plot showing samples from the (normalised) SAN approximate posteriors for a simulated test point. The true parameter
values are indicated in orange.

C. Updated Model
Following acceptance to this ICML workshop, we modified our neural density estimator (SAN) to make more efficient use of
computation while reducing the number of parameters, thus improving computation time.

In the original SAN, the later dimensions would benefit from a deeper network and thus potentially better representations,
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Figure 4. Updated network architecture for our neural density estimator.

while the first few marginals would be occasioned far less computation.

To address this, we introduced a single large encoder block E, which deterministically maps photometric observations to a
low-dimensional latent feature vector E : x→ z. This feature vector is then provided as the conditioning information to a
(now smaller) SAN; thus allowing us to re-use computation when generating each marginal. This has the additional benefit
that the order of the marginals is now a far less important consideration.

The modified network architecture is visualised in Figure 4, which we use with the following model parameters:

parameter likelihood posterior

encoder shape [512,] [7000, 7000]
SAN module shape [128,] [2000,]

activation ReLU ReLU
latent features 25 100

sequence features 2 8
batch size 2048 5000

mixture components, K 3 5
Adam learning rate 3e-3 7e-4

Adam decay 1e-4 1e-4
normalisation layer norm layer norm

This updated architecture allows us to acheive better approximations to the likelihood and posterior. The result of the full
training procedure (including the HMC update step) is shown in Figure 5, and represents a tangible improvement over the
original SAN architecture. This model is available in the accompanying codebase.
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Figure 5. Evaluation Plots for the updated SAN architecture.


